2,170 research outputs found

    Magnetization pinning in modulated nanowires: from topological protection to the "corkscrew" mechanism

    Full text link
    Diameter-modulated nanowires offer an important paradigm to design the magnetization response of 3D magnetic nanostructures by engineering the domain wall pinning. With the aim to understand its nature and to control the process, we analyze the magnetization response in FeCo modulated polycrystalline two-segment nanowires varying the minor diameter. Our modelling indicates a very complex behavior with a strong dependence on the disorder distribution and an important role of topologically non-trivial magnetization structures. We demonstrate that modulated nanowires with a small diameter difference are characterized by an increased coercive field in comparison to the straight ones which is explained by a formation of topologically protected walls formed by two 3D skyrmions with opposite chiralities. For a large diameter difference we report the occurrence of a novel pinning type called here the "corkscrew": the magnetization of the large diameter segment forms a skyrmion tube with a core position in a helical modulation along the nanowire. This structure is pinned at the constriction and in order to penetrate the narrow segments the vortex/skyrmion core size should be reduced

    Pressure-Induced Phase Transition Versus Amorphization in Hybrid Methylammonium Lead Bromide Perovskite

    Full text link
    The crystal structure of CH3NH3PbBr3 perovskite has been investigated under high-pressure by synchrotron-based powder X-ray diffraction. We found that after the previously reported phase transitions in CH3NH3PbBr3 (Pm-3m->Im-3->Pmn21), which occur below 2 GPa, there is a third transition to a crystalline phase at 4.6 GPa. This transition is reported here for the first time contradicting previous studies which reported amorphization of CH3NH3PbBr3 between 2.3 and 4.6 GPa. Our X-ray diffraction measurements show that CH3NH3PbBr3 remains crystalline up to 7.6 GPa, the highest pressure covered by experiments. The new high-pressure phase is also described by the space group Pmn21, but the transition involves abrupt changes in the unit-cell parameters and a 3% decrease of the unit-cell volume. Our conclusions are confirmed by optical-absorption experiments and visual observations and by the fact that changes induced by pressure up to 10 GPa are reversible. The optical studies also allow for the determination of the pressure dependence of the band-gap energy which is discussed using the structural information obtained from X-ray diffraction.Comment: 15 pages, 4 figure

    Role of Iodine Recycling on Sea-Salt Aerosols in the Global Marine Boundary Layer

    Get PDF
    Heterogeneous uptake of hypoiodous acid (HOI), the dominant inorganic iodine species in the marine boundary layer (MBL), on sea-salt aerosol (SSA) to form iodine monobromide and iodine monochloride has been adopted in models with assumed efficiency. Recently, field measurements have reported a much faster rate of this recycling process than previously assumed in models. Here, we conduct global model simulations to quantify the range of effects of iodine recycling within the MBL, using Conventional, Updated, and Upper-limit coefficients. When considering the Updated coefficient, iodine recycling significantly enhances gaseous inorganic iodine abundance (similar to 40%), increases halogen atom production rates (similar to 40% in I, >100% in Br, and similar to 60% in Cl), and reduces oxidant levels (-7% in O-3, -2% in OH, and -4% in HO2) compared to the simulation without the process. We appeal for further direct measurements of iodine species, laboratory experiments on the controlling factors, and multiscale simulations of iodine heterogeneous recycling.Peer reviewe

    Semaphorin4A-Plexin D1 Axis Induces Th2 and Th17 While Represses Th1 Skewing in an Autocrine Manner

    Get PDF
    Semaphorin (Sema)4A is a transmembrane glycoprotein that is elevated in several autoimmune diseases such as systemic sclerosis, rheumatoid arthritis and multiple sclerosis. Sema4A has a key role in the regulation of Thelper Th1 and Th2 differentiation and we recently demonstrated that CD4(+) T cell activation induces the expression of Sema4A. However, the autocrine role of Sema4A on Th cell differentiation remains unknown. Naive Th cells from healthy controls were cell sorted and differentiated into Th1, Th2 and Th17 in the presence or absence of a neutralizing antibody against the Sema4A receptor PlexinD1. Gene expression was determined by quantitative PCR and protein expression by ELISA and flow cytometry. We found that the expression of Sema4A is induced during Th1, Th2 and Th17 differentiation. PlexinD1 neutralization induced the differentiation of Th1 cells, while reduced the Th2 and Th17 skewing. These effects were associated with an upregulation of the transcription factor T-bet by Th1 cells, and to downregulation of GATA3 and RORgammat in Th2 cells and Th17 cells, respectively. Finally, PlexinD1 neutralization regulates the systemic sclerosis patients serum-induced cytokine production by CD4(+) T cells. Therefore, the autocrine Sema4A-PlexinD1 signaling acts as a negative regulator of Th1 skewing but is a key mediator on Th2 and Th17 differentiation, suggesting that dysregulation of this axis might be implicated in the pathogenesis of CD4(+) T cell-mediated diseases

    Chemical interactions between ship-originated air pollutants and ocean-emitted halogens

    Get PDF
    Ocean-going ships supply products from one region to another and contribute to the world's economy. Ship exhaust contains many air pollutants and results in significant changes in marine atmospheric composition. The role of Reactive Halogen Species (RHS) in the troposphere has received increasing recognition and oceans are the largest contributors to their atmospheric burden. However, the impact of shipping emissions on RHS and that of RHS on ship-originated air pollutants have not been studied in detail. Here, an updated WRF-Chem model is utilized to explore the chemical interactions between ship emissions and oceanic RHS over the East Asia seas in summer. The emissions and resulting chemical transformations from shipping activities increase the level of NO and NO2 at the surface, increase O3 in the South China Sea, but decrease O3 in the East China Sea. Such changes in pollutants result in remarkable changes in the levels of RHS as well as in their partitioning. The abundant RHS, in turn, reshape the loadings of air pollutants and those of the oxidants with marked patterns along the ship tracks. We, therefore, suggest that these important chemical interactions of ship-originated emissions with RHS should be considered in the environmental policy assessments of the role of shipping emissions in air quality and climate.Fil: Li, Qinyi. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Fernandez, Rafael P.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaFil: Mahan, Anoop. No especifíca;Fil: Lopez, Ana Isabel. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; ArgentinaFil: Shanshan, Wang. Key Laboratory Atmospheric Particle Pollution Research; ChinaFil: Puliafito, Salvador Enrique. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; ArgentinaFil: Cuevas, Carlos A.. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Saiz Lopez, Alfonso. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaEGU General Assembly 2021AustriaEuropean Geosciences Unio

    Lack of Association of the ABO Blood Group with COVID-19 risk and Severity in Hospitalized Patients in Louisville, KY

    Get PDF
    Background: The potential association of the ABO blood group with the risk of COVID-19 and its severity has attracted a lot of interest since the start of the pandemic. While a number of studies have reported an increased risk associated with blood type A and a reduced risk with type O, other studies have did not found a significant effect. This study aimed to define the prevalence of different ABO blood groups in hospitalized COVID-19 patients in the Louisville, KY area and to investigate whether an association exists between the blood group and disease severity. Methods: This was a retrospective observational study of 380 patients with SARS-CoV-2 infection hospitalized to eight of the adult hospitals in the city of Louisville. Patients were divided into four different groups according to their ABO blood type. Demographic characteristics and clinical variables, including laboratory data as well as clinical outcomes were compared. Results: Type O was the most common blood group among the hospitalized patients (51%) followed by type A (31%), B (14%) and AB (4%). The observed blood group distribution among the patients was not significantly different from the distribution expected when compared to a population of similar racial/ethnic composition. No significant associations were found between the blood group and comorbidities, inflammatory biomarkers as well as with recorded outcomes, including the mortality rate and the length of the hospital stay. Conclusions: The data from hospitalized patients in Louisville is is not consistent with the ABO blood group having a significant effect as a risk or severity factor for COVID-19, but it is representative in COVID-19 or its severityof its prevalence among different racial/ethnic populations

    Stand density management diagrams of Eucalyptus viminalis: predicting stem volume, biomass and canopy cover for different production purposes

    Get PDF
    Stand density management diagrams (SDMD) provide a guide for forest density management taking into account stands attributes such as trees´ diameter or volume. One of the most common species planted in Pampean plains of Argentina is Eucalyptus viminalis for multiple objectives: solid wood use or firewood in local markets, pulp for cellulose industry and to provide services for agriculture and cattle raising (windbreaks or cattle refuge). The objective of this study was to gather the available production information /inventory dataand to develop a first SDMD for estimating standing volume, biomass and canopy cover of E. viminalis as a tool for forest managers aiming at different plantation purposes. Data to develop the SDMD were obtained from 161 plots, distributed along a climate and soil gradient. We also generated two predictive equations capable of estimating dominant height from the diameter of the trees as well as canopy cover from stand basal area. As an example of application, the SDMD was used to estimate the wood production of three alternative systems: a) an unmanaged plantation (simulating a common practice in the region), b) a mixed production system such as an agroforestry system, and c) a plantation that maximizes wood biomass or volume production.Fil: Gyenge, Javier Enrique. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce. Agencia de Extensión Rural Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaFil: Lupi, A.. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Ferrere, P.. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Milione, Germán Marcelo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; ArgentinaFil: Martinez Meier, Alejandro Gabriel. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Caballé, G.. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Dominguez Daguer, Diego Rafael. No especifíca;Fil: Fernandez, Maria Elena. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce. Agencia de Extensión Rural Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentin

    Predicting 30-Day Mortality in Hospitalized Patients with Community-Acquired Pneumonia Using Statistical and Machine Learning Approaches

    Get PDF
    Background: Predicting if a hospitalized patient with community-acquired pneumonia (CAP) will or will not survive after admission to the hospital is important for research purposes as well as for institution of early patient management interventions. Although population-level mortality prediction scores for these patients have been around for many years, novel patient-level algorithms are needed. The objective of this study was to assess several statistical and machine learning models for their ability to predict 30-day mortality in hospitalized patients with CAP. Methods: This was a secondary analysis of the University of Louisville (UofL) Pneumonia Study database. Six different statistical and/or machine learning methods were used to develop patientlevel prediction models for hospitalized patients with CAP. For each model, nine different statistics were calculated to provide measures of the overall performance of the models. Results: A total of 3249 unique hospitalized patients with CAP were enrolled in the study, 2743 were included in the model building (training) dataset, while the remaining 686 were included in the testing dataset. From the full population, death at 30-days post discharge was documented in 458 (13.4%) patients. All models resulted in high variation in the ability to predict survivors and non-survivors at 30 days. Conclusions: In conclusion, this study suggests that accurate patient-level prediction of 30-day mortality in hospitalized patients with CAP is difficult with statistical and machine learning approaches. It will be important to evaluate novel variables and other modeling approaches to better predict poor clinical outcomes in these patients to ensure early and appropriate interventions are instituted

    Chemical interactions between ship-originated air pollutants and ocean-emitted halogens

    Get PDF
    Unidad de excelencia María de Maeztu CEX2019-000940-MOcean-going ships supply products from one region to another and contribute to the world's economy. Ship exhaust contains many air pollutants and results in significant changes in marine atmospheric composition. The role of reactive halogen species (RHS) in the troposphere has received increasing recognition and oceans are the largest contributors to their atmospheric burden. However, the impact of shipping emissions on RHS and that of RHS on ship-originated air pollutants have not been studied in detail. Here, an updated Weather Research Forecasting coupled with Chemistry model is utilized to explore the chemical interactions between ship emissions and oceanic RHS over the East Asia seas in summer. The emissions and resulting chemical transformations from shipping activities increase the level of NO and NO at the surface, increase O in the South China Sea, but decrease O in the East China Sea. Such changes in pollutants result in remarkable changes in the levels of RHS (>200% increase of chlorine; ∼30% and ∼5% decrease of bromine and iodine, respectively) as well as in their partitioning. The abundant RHS, in turn, reshape the loadings of air pollutants (∼20% decrease of NO and NO; ∼15% decrease of O) and those of the oxidants (>10% reduction of OH and HO; ∼40% decrease of NO) with marked patterns along the ship tracks. We, therefore, suggest that these important chemical interactions of ship-originated emissions with RHS should be considered in the environmental policy assessments of the role of shipping emissions in air quality and climate
    corecore