49,834 research outputs found

    Single exciton spectroscopy of single-Mn doped InAs quantum dots

    Get PDF
    The optical spectroscopy of a single InAs quantum dot doped with a single Mn atom is studied using a model Hamiltonian that includes the exchange interactions between the spins of the quantum dot electron-hole pair, the Mn atom and the acceptor hole. Our model permits to link the photoluminescence spectra to the Mn spin states after photon emission. We focus on the relation between the charge state of the Mn, A0A^0 or A−A^-, and the different spectra which result through either band-to-band or band-to-acceptor transitions. We consider both neutral and negatively charged dots. Our model is able to account for recent experimental results on single Mn doped InAs PL spectra and can be used to account for future experiments in GaAs quantum dots. Similarities and differences with the case of single Mn doped CdTe quantum dots are discussed.Comment: 15 pages, 9 figure

    Zc(3900)Z_c(3900): Confronting theory and lattice simulations

    Get PDF
    We consider a recent TT-matrix analysis by Albaladejo {\it et al.}, [Phys.\ Lett.\ B {\bf 755}, 337 (2016)] which accounts for the J/ψπJ/\psi\pi and D∗DˉD^\ast\bar{D} coupled--channels dynamics, and that successfully describes the experimental information concerning the recently discovered Zc(3900)±Z_c(3900)^\pm. Within such scheme, the data can be similarly well described in two different scenarios, where the Zc(3900)Z_c(3900) is either a resonance or a virtual state. To shed light into the nature of this state, we apply this formalism in a finite box with the aim of comparing with recent Lattice QCD (LQCD) simulations. We see that the energy levels obtained for both scenarios agree well with those obtained in the single-volume LQCD simulation reported in Prelovsek {\it et al.} [Phys.\ Rev.\ D {\bf 91}, 014504 (2015)], making thus difficult to disentangle between both possibilities. We also study the volume dependence of the energy levels obtained with our formalism, and suggest that LQCD simulations performed at several volumes could help in discerning the actual nature of the intriguing Zc(3900)Z_c(3900) state

    Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides

    Get PDF
    Ion migration in high repetition rate femtosecond laser inscribed waveguides is currently being reported in different optical glasses. For the first time we discuss and experimentally demonstrate the presence of two regimes of ion migration found in laser written waveguides. Regime-I, corresponds to the initial waveguide formation mainly via light element migration (in our case atomic weight < 31u), whereas regime-II majorly corresponds to the movement of heavy elements. This behavior brings attention to a problem which has never been analyzed before and that affects laser written active waveguides in which active ions migrate changing their local spectroscopic properties. The migration of active ions may in fact detune the pre-designed optimal values of active photonic devices. This paper experimentally evidences this problem and provides solutions to avert it.Comment: 4 pages, 5 figure

    Excited-state quantum phase transitions in a two-fluid Lipkin model

    Get PDF
    Background: Composed systems have became of great interest in the framework of the ground state quantum phase transitions (QPTs) and many of their properties have been studied in detail. However, in these systems the study of the so called excited-state quantum phase transitions (ESQPTs) have not received so much attention. Purpose: A quantum analysis of the ESQPTs in the two-fluid Lipkin model is presented in this work. The study is performed through the Hamiltonian diagonalization for selected values of the control parameters in order to cover the most interesting regions of the system phase diagram. [Method:] A Hamiltonian that resembles the consistent-Q Hamiltonian of the interacting boson model (IBM) is diagonalized for selected values of the parameters and properties such as the density of states, the Peres lattices, the nearest-neighbor spacing distribution, and the participation ratio are analyzed. Results: An overview of the spectrum of the two-fluid Lipkin model for selected positions in the phase diagram has been obtained. The location of the excited-state quantum phase transition can be easily singled out with the Peres lattice, with the nearest-neighbor spacing distribution, with Poincar\'e sections or with the participation ratio. Conclusions: This study completes the analysis of QPTs for the two-fluid Lipkin model, extending the previous study to excited states. The ESQPT signatures in composed systems behave in the same way as in single ones, although the evidences of their presence can be sometimes blurred. The Peres lattice turns out to be a convenient tool to look into the position of the ESQPT and to define the concept of phase in the excited states realm

    Synthesis of Y1BaCu3O(x) superconducting powders by intermediate phase reactions

    Get PDF
    A procedure for synthesizing Y1Ba2Cu3O(x) by solid state reactions was developed. The method is based on the use of barium compounds, previously synthesized, as intermediate phases for the process. The reaction kinetics of this procedure were established between 860 C and 920 C. The crystal structure and the presence of second phases were studied by means of XRD. The sintering behavior and ceramic parameters were also determined. The orthorhombic type-I structure was obtained on the synthesized bodies after a cooling cycle in an air atmosphere. Superconducting transition took place at 91 K. Sintering densities higher than 95 percent D sub th were attained at temperatures below 940 C
    • …
    corecore