27 research outputs found

    Association of Circulating Tumor DNA Testing Before Tissue Diagnosis With Time to Treatment Among Patients With Suspected Advanced Lung Cancer: The ACCELERATE Nonrandomized Clinical Trial.

    Get PDF
    IMPORTANCE Liquid biopsy has emerged as a complement to tumor tissue profiling for advanced non-small cell lung cancer (NSCLC). The optimal way to integrate liquid biopsy into the diagnostic algorithm for patients with newly diagnosed advanced NSCLC remains unclear. OBJECTIVE To evaluate the use of circulating tumor DNA (ctDNA) genotyping before tissue diagnosis among patients with suspected advanced NSCLC and its association with time to treatment. DESIGN, SETTING, AND PARTICIPANTS This single-group nonrandomized clinical trial was conducted among 150 patients at the Princess Margaret Cancer Centre-University Health Network (Toronto, Ontario, Canada) between July 1, 2021, and November 30, 2022. Patients referred for investigation and diagnosis of lung cancer were eligible if they had radiologic evidence of advanced lung cancer prior to a tissue diagnosis. INTERVENTIONS Patients underwent plasma ctDNA testing with a next-generation sequencing (NGS) assay before lung cancer diagnosis. Diagnostic biopsy and tissue NGS were performed per standard of care. MAIN OUTCOME AND MEASURES The primary end point was time from referral to treatment initiation among patients with advanced nonsquamous NSCLC using ctDNA testing before diagnosis (ACCELERATE [Accelerating Lung Cancer Diagnosis Through Liquid Biopsy] cohort). This cohort was compared with a reference cohort using standard tissue genotyping after tissue diagnosis. RESULTS Of the 150 patients (median age at diagnosis, 68 years [range, 33-91 years]; 80 men [53%]) enrolled, 90 (60%) had advanced nonsquamous NSCLC. The median time to treatment was 39 days (IQR, 27-52 days) for the ACCELERATE cohort vs 62 days (IQR, 44-82 days) for the reference cohort (P < .001). Among the ACCELERATE cohort, the median turnaround time from sample collection to genotyping results was 7 days (IQR, 6-9 days) for plasma and 23 days (IQR, 18-28 days) for tissue NGS (P < .001). Of the 90 patients with advanced nonsquamous NSCLC, 21 (23%) started targeted therapy before tissue NGS results were available, and 11 (12%) had actionable alterations identified only through plasma testing. CONCLUSIONS AND RELEVANCE This nonrandomized clinical trial found that the use of plasma ctDNA genotyping before tissue diagnosis among patients with suspected advanced NSCLC was associated with accelerated time to treatment compared with a reference cohort undergoing standard tissue testing. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04863924

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Rehabilitation in primary care for an ageing population: a secondary analysis from a scoping review of rehabilitation delivery models

    No full text
    Abstract Background The world population is ageing rapidly. Rehabilitation is one of the most effective health strategies for improving the health and functioning of older persons. An understanding of the current provision of rehabilitation services in primary care (PC) is needed to optimise access to rehabilitation for an ageing population. The objectives of this scoping review are a) to describe how rehabilitation services are currently offered in PC to older persons, and b) to explore age-related differences in the type of rehabilitation services provided. Methods We conducted a secondary analysis of a scoping review examining rehabilitation models for older persons, with a focus on PC. Medline and Embase (2015–2022) were searched to identify studies published in English on rehabilitation services for people aged 50 + . Two authors independently screened records and extracted data using the World Health Organization (WHO)’s operational framework, the Primary Health Care Systems (PRIMASYS) approach and the WHO paper on rehabilitation in PC. Data synthesis included quantitative and qualitative analysis. Results We synthesised data from 96 studies, 88.6% conducted in high-income countries (HICs), with 31,956 participants and identified five models for delivering rehabilitation to older persons in PC: community, home, telerehabilitation, outpatient and eldercare. Nurses, physiotherapists, and occupational therapists were the most common providers, with task-shifting reported in 15.6% of studies. The most common interventions were assessment of functioning, rehabilitation coordination, therapeutic exercise, psychological interventions, and self-management education. Environmental adaptations and assistive technology were rarely reported. Conclusions We described how rehabilitation services are currently provided in PC and explored age-related differences in the type of rehabilitation services received. PC can play a key role in assessing functioning and coordinating the rehabilitation process and is also well-placed to deliver rehabilitation interventions. By understanding models of rehabilitation service delivery in PC, stakeholders can work towards developing more comprehensive and accessible services that meet the diverse needs of an ageing population. Our findings, which highlight the role of rehabilitation in healthy ageing, are a valuable resource for informing policy, practice and future research in the context of the United Nations Decade of Healthy Ageing, the Rehab2030 initiative and the recently adopted WHA resolution on strengthening rehabilitation in health systems, but the conclusions can only be applied to HICs and more studies are needed that reflect the reality in low- and middle-income countries

    Automated microinjection of recombinant BCL-X into mouse zygotes enhances embryo development.

    Get PDF
    Progression of fertilized mammalian oocytes through cleavage, blastocyst formation and implantation depends on successful implementation of the developmental program, which becomes established during oogenesis. The identification of ooplasmic factors, which are responsible for successful embryo development, is thus crucial in designing possible molecular therapies for infertility intervention. However, systematic evaluation of molecular targets has been hampered by the lack of techniques for efficient delivery of molecules into embryos. We have developed an automated robotic microinjection system for delivering cell impermeable compounds into preimplantation embryos with a high post-injection survival rate. In this paper, we report the performance of the system on microinjection of mouse embryos. Furthermore, using this system we provide the first evidence that recombinant BCL-XL (recBCL-XL) protein is effective in preventing early embryo arrest imposed by suboptimal culture environment. We demonstrate that microinjection of recBCL-XL protein into early-stage embryos repairs mitochondrial bioenergetics, prevents reactive oxygen species (ROS) accumulation, and enhances preimplantation embryo development. This approach may lead to a possible treatment option for patients with repeated in vitro fertilization (IVF) failure due to poor embryo quality
    corecore