1,098 research outputs found

    Additive manufacturing of bioactive glass in a biodegradable matrix

    Get PDF
    Bioactive glass can induce a specific and fast response in the human body that supports tissue regeneration. It is possible to control the design of customized bioapplications with advanced technologies. Although currently used in research, only a few of these technologies have been approved by the FDA to be applied in Tissue Engineering. There is dedicated additive manufacturing equipment to manufacture biomaterials. Since they are emerging technologies in emerging fields of application it is necessary to study and develop formulations with suitable processing characteristics [1]. Formulations of bioactive glass (CaO·P2O5·MgO·SiO2 system) in two different biodegradable matrices (polylactide (PLA) and polycaprolactone (PCL)) were prepared and processed by material extrusion process, namely by Fused Filament Fabrication technique.. The polymer (PLA or PCL) involves bioactive particles in biocompatible media and allows to acquire extrudable skills. The formulations with different solid contents (20–50 wt.%) were prepared using a brabender mixer type and were characterized by different techniques (e.g., X-ray diffraction (XRD), differential scanning calorimetry (DSC), melt flow index (MFI)). The inorganic particles influence the rheological and thermal properties of bioactive glass composites. The viscosity decreases with the increase of bioactive glass content in the polymer matrix. Mechanical standard samples and scaffolds were printed and characterized. Bioactive glass composites until 40 wt.% of solid content can be printed. The bioactive glass improves the mechanical resistance of composites compared to a neat polymer matrix. However, formulations with high bioactive glass solid content (50 wt.%) showed printing limitations by their brittleness and clogging tendency.publishe

    SEASONAL AND CIRCADIAN VARIATION OF BARBATUSIN IN SAMPLES OF PLECTRANTHUS GRANDIS WILLENSE GROWN IN NORTHEAST BRAZIL

    Get PDF
    Objective: This work includes the study of circadian and seasonal variation of barbatusin, active compound present in P. grandis (Plectranthus grandis), through the implementation and validation of an analytical method capable of detecting and quantifying this metabolite.Methods: High-performance liquid chromatography (HPLC) was performed with a Phenomenex C18 column (250 mm x 4.60 mm-5 µm), a binary gradient of water and acetonitrile (8:2, v/v) at a constant flow rate of 0.8 ml min-1 and ultraviolet-visible spectroscopy (UV-VIS) at 254 nm as detector.Results: The retention factor for barbatusin was found to be 18.34±0.05 min. The calibration curve was linear (r2>0.999). The intraday and interday precisions of the method were determined, the (Relative Standard Deviation) RSD (%) ranged from 0.74 to 3.53 and from 2.21 to 5.30, respectively. The limits of detection and quantification were 85.30 and 258.40 µg ml-1. The method is simple, precise, accurate and selective and can be routinely used for barbatusin analysis in P. grandis extracts.Conclusion: The methodology can be applied to the quantification barbatusin of powdered samples P. grandis at any time of year. The method showed excellent results in all steps of the validation demonstrating the possibility of an extensive use of time for the determination with the largest amount of compound derivatization of the same order for future studies.Keywords: Plectranthus grandis, Barbatusin, HPLC, Quantification, Diterpen

    Experimental study on the seismic behavior of masonry wall-to-floor connections

    Get PDF
    The global structural performance of masonry buildings, under earthquake loading, is affected by the efficiency of wall-to-floor connections, since they assure the continuity of the energy path and prevent the occurrence of most of the local collapse mechanisms. In fact, out-of-plane behaviour of masonry walls observed in recent seismic events showed the critical importance of proper connections in historical buildings. A review of current literature yields little in terms of experimental and numerical data on the subject. Thus, there is an urgent need to study the behaviour of these connections. The present paper presents a series of tests carried out to characterize the wall-to-floor connections. Different specimens were constructed in laboratory to represent connections found in ‘Gaioleiro’ and Late ‘Pombalino’ buildings in downtown Lisbon. Pull-out tests of wall-to-floor connections were carried out on unstrengthened and strengthened specimens in order to study failure modes, maximum pullout forces, and corresponding displacements. These parameters allow better understanding of this type of connection and also the development of design recommendations for the strengthening

    The amino acids motif-32GSSYN36-in the catalytic domain of E. coli flavorubredoxin NO reductase is essential for its activity

    Get PDF
    Funding Information: Funding: This study was financially supported by the Portuguese Fundação para a Ciência e Tec-nologia (FCT), grants PTDC/BIA-BQM/27959/2017 and PTDC/BIA-BQM/0562/2020, and Project MOSTMICRO-ITQB with references UIDB/04612/2020 and UIDP/04612/2020. This project has also received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement 810856. MCM is the recipient of FCT grant SFRH/BD/143651/2019. BAS is the recipient of FCT grant DFA/BD/8066/2020. Funding Information: This study was financially supported by the Portuguese Funda??o para a Ci?ncia e Tecnologia (FCT), grants PTDC/BIA-BQM/27959/2017 and PTDC/BIA-BQM/0562/2020, and Project MOSTMICRO-ITQB with references UIDB/04612/2020 and UIDP/04612/2020. This project has also received funding from the European Union?s Horizon 2020 research and innovation program under grant agreement 810856. MCM is the recipient of FCT grant SFRH/BD/143651/2019. BAS is the recipient of FCT grant DFA/BD/8066/2020. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Flavodiiron proteins (FDPs) are a family of modular and soluble enzymes endowed with nitric oxide and/or oxygen reductase activities, producing N2O or H2O, respectively. The FDP from Escherichia coli, which, apart from the two core domains, possesses a rubredoxin-like domain at the C-terminus (therefore named flavorubredoxin (FlRd)), is a bona fide NO reductase, exhibiting O2 reducing activity that is approximately ten times lower than that for NO. Among the flavorubredoxins, there is a strictly conserved amino acids motif,-G[S,T]SYN-, close to the catalytic diiron center. To assess its role in FlRd’s activity, we designed several site-directed mutants, replacing the conserved residues with hydrophobic or anionic ones. The mutants, which maintained the general characteristics of the wild type enzyme, including cofactor content and integrity of the diiron center, revealed a decrease of their oxygen reductase activity, while the NO reductase activity—specifically, its physiological function—was almost completely abolished in some of the mutants. Molecular modeling of the mutant proteins pointed to subtle changes in the predicted structures that resulted in the reduction of the hydration of the regions around the conserved residues, as well as in the elimination of hydrogen bonds, which may affect proton transfer and/or product release.publishe

    Di-ureasil hybrids doped with LiBF4: attractive candidates as electrolytes for "Smart Windows"

    Get PDF
    The sol-gel process has been used to prepare hybrid electrolytes composed of a poly(oxyethylene) (POE)/siloxane hybrid network doped with lithium tetrafluoroborate (LiBF4) with compositions of n between ∞ and 2.5. In this context the lithium salt concentration is expressed in terms of the number of oxyethylene units in the organic component of the network per Li+ ion. Electrolyte samples with n ≥ 20 are thermally stable up to approximately 250 ºC. All the materials synthesized are semi-crystalline: in the composition range n ≥ 15 free crystalline POE exists and at 60 ≥ n ≥ 2.5 evidence of the presence of a crystalline POE/LiBF4 compound has been found. At n = 2.5 this latter crystalline phase coexists with free salt. The room temperature conductivity maximum of this electrolyte system is located at n = 10 (1.5x10-5 S cm-1 at 22 ºC). The electrochemical stability domain of the sample with n = 15 spans about 5.5 V versus Li/Li+. This new series of materials represents a promising alternative to the LiTFSI- and LiClO4-doped POE and POE/siloxane analogues. Preliminary tests performed with a prototype electrochromic device (ECD) comprising the sample with n = 8 as electrolyte and WO3 as cathodically coloring layer are extremely encouraging. The device exhibits switching time around 50 s, an optical density change of 0.13, open circuit memory of about 4 months and high coloration efficiency (106 cm2C-1 in the 3rd cycle).Fundação para a Ciência e a Tecnologi

    Squaraine dyes derived from indolenine and benzo[e]indole as potential fluorescent probes for HSA detection and antifungal agents

    Get PDF
    Four squaraine dyes derived from 2,3,3-trimethylindolenine and 1,1,2-trimethyl-1H-benzo[e]indole with different combinations of barbituric groups attach to the central ring, having ester groups and alkyl chains in the nitrogen atoms of heterocyclic rings were synthesized. These dyes were fully characterized and their photophysical behavior was studied in ethanol and phosphate-buffered saline solution. Absorption and emission bands between 631 and 712 nm were detected, with the formation of aggregates in aqueous media, which is typical of this class of dyes. Tests carried out with 1,3-diphenylisobenzofuran allowed us to verify the ability of the dyes to produce singlet oxygen. The interaction of synthesized dyes with human serum albumin (HSA) was also evaluated, being demonstrated a linear correlation between fluorescence intensity and protein concentration. The antifungal potential of the dyes against the yeast Saccharomyces cerevisiae was evaluated using a broth microdilution assay. In order to test the photosensitizing capacity of the synthesized dyes, tests were carried out in the dark and with irradiation, using a custom-built light-emitting diode that emits close to the absorption wavelength of the studied dyes. The results showed that the interaction of dyes with HSA and the antifungal activity depends on the different structural modifications of the dyes.We thanks to Fundação para a Ciência e Tecnologia (FCT), Comissão de Coordenação e Desenvolvimento Regional do Norte (CCDR-N) and FEDER (European Fund for Regional Development)-COMPETEQREN-EU for financial support to the research centers CQ/UM (UIDB/00686/2020), CBMA (UID/BIA/04050/2020), CQ/VR (UID/QUI/UI0616/2019) and CICSUBI (POCI-01-0145-FEDER-007491), as well as PhD grants to V.S.D.G. (UMINHO/BD/43/2016) and J.C.C.F. (SFRH/BD/133207/2017)

    Testing for nematode–granulometry relationships

    Get PDF
    The majority of studies have advocated that diversity of marine nematodes increases with increasing sediment grain size, although the opposite trend has also been suggested. The controversy is partially caused by not taking into account the effect of density on patterns of diversity and by analyzing datasets from different environments. The present study investigated nematode assemblages from sediments varying from very fine sand (mean grain size of 0.12 mm) to very coarse sand (1 mm) in shallow sublittoral marine environments. Contrary to previous studies, species richness was constant along the granulometric spectrum, despite significant changes in composition. The dominant genera were separated into five groups according to their optimum distribution and there was little overlap between these groups. Concepts from the niche theory explain to some extent the observed patterns. For instance, some of the coexisting genera were from different feeding types
    corecore