157 research outputs found

    Close encounters involving RAVE stars beyond the 47 Tucanae tidal radius

    Full text link
    The most accurate 6D phase-space information from the Radial Velocity Experiment (RAVE) was used to integrate the orbits of 105 stars around the galactic globular cluster 47 Tucanae, to look for close encounters between them in the past, with a minimum distance approach less than the cluster tidal radius. The stars are currently over the distance range 3.0 kpc << d << 5.5 kpc. Using the uncertainties in the current position and velocity vector for both, star and cluster, 105 pairs of star-cluster orbits were generated in a Monte Carlo numerical scheme, integrated over 2 Gyr and considering an axisymmetric and non-axisymmetric Milky-Way-like Galactic potential, respectively. In this scheme, we identified 20 potential cluster members that had close encounters with the globular cluster 47 Tucanae, all of which have a relative velocity distribution (Vrel_{rel}) less than 200 km s1^{-1} at the minimum distance approach. Among these potential members, 9 had close encounters with the cluster with velocities less than the escape velocity of 47 Tucanae, therefore a scenario of tidal stripping seems likely. These stars have been classified with a 93\% confidence level, leading to the identification of extratidal cluster stars. For the other 11 stars, Vrel_{rel} exceeds the escape velocity of the cluster, therefore they were likely ejected or are unassociated interlopers.Comment: 10 pages, 6 figures, 2 table, Accepted for publication in MNRA

    Searching for tidal tails around ω\omega Centauri using RR Lyrae Stars

    Full text link
    We present a survey for RR Lyrae stars in an area of 50 deg2^2 around the globular cluster ω\omega Centauri, aimed to detect debris material from the alleged progenitor galaxy of the cluster. We detected 48 RR Lyrae stars of which only 11 have been previously reported. Ten among the eleven previously known stars were found inside the tidal radius of the cluster. The rest were located outside the tidal radius up to distances of 6\sim 6 degrees from the center of the cluster. Several of those stars are located at distances similar to that of ω\omega Centauri. We investigated the probability that those stars may have been stripped off the cluster by studying their properties (mean periods), calculating the expected halo/thick disk population of RR Lyrae stars in this part of the sky, analyzing the radial velocity of a sub-sample of the RR Lyrae stars, and finally, studying the probable orbits of this sub-sample around the Galaxy. None of these investigations support the scenario that there is significant tidal debris around ω\omega Centauri, confirming previous studies in the region. It is puzzling that tidal debris have been found elsewhere but not near the cluster itself.Comment: 11 pages, 11 figures, Accepte

    SDSS IV MaNGA - Rotation Velocity Lags in the Extraplanar Ionized Gas from MaNGA Observations of Edge-on Galaxies

    Get PDF
    We present a study of the kinematics of the extraplanar ionized gas around several dozen galaxies observed by the Mapping of Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. We considered a sample of 67 edge-on galaxies out of more than 1400 extragalactic targets observed by MaNGA, in which we found 25 galaxies (or 37%) with regular lagging of the rotation curve at large distances from the galactic midplane. We model the observed HαH\alpha emission velocity fields in the galaxies, taking projection effects and a simple model for the dust extinction into the account. We show that the vertical lag of the rotation curve is necessary in the modeling, and estimate the lag amplitude in the galaxies. We find no correlation between the lag and the star formation rate in the galaxies. At the same time, we report a correlation between the lag and the galactic stellar mass, central stellar velocity dispersion, and axial ratio of the light distribution. These correlations suggest a possible higher ratio of infalling-to-local gas in early-type disk galaxies or a connection between lags and the possible presence of hot gaseous halos, which may be more prevalent in more massive galaxies. These results again demonstrate that observations of extraplanar gas can serve as a potential probe for accretion of gas.Comment: 13 pages, 11 figures, accepted for publication in Ap

    Characterizing SL2S galaxy groups using the Einstein radius

    Full text link
    We analyzed the Einstein radius, θE\theta_E, in our sample of SL2S galaxy groups, and compared it with RAR_A (the distance from the arcs to the center of the lens), using three different approaches: 1.- the velocity dispersion obtained from weak lensing assuming a Singular Isothermal Sphere profile (θE,I\theta_{E,I}), 2.- a strong lensing analytical method (θE,II\theta_{E,II}) combined with a velocity dispersion-concentration relation derived from numerical simulations designed to mimic our group sample, 3.- strong lensing modeling (θE,III\theta_{E,III}) of eleven groups (with four new models presented in this work) using HST and CFHT images. Finally, RAR_A was analyzed as a function of redshift zz to investigate possible correlations with L, N, and the richness-to-luminosity ratio (N/L). We found a correlation between θE\theta_{E} and RAR_A, but with large scatter. We estimate θE,I\theta_{E,I} = (2.2 ±\pm 0.9) + (0.7 ±\pm 0.2)RAR_A, θE,II\theta_{E,II} = (0.4 ±\pm 1.5) + (1.1 ±\pm 0.4)RAR_A, and θE,III\theta_{E,III} = (0.4 ±\pm 1.5) + (0.9 ±\pm 0.3)RAR_A for each method respectively. We found a weak evidence of anti-correlation between RAR_A and zz, with LogRAR_A = (0.58±\pm0.06) - (0.04±\pm0.1)zz, suggesting a possible evolution of the Einstein radius with zz, as reported previously by other authors. Our results also show that RAR_A is correlated with L and N (more luminous and richer groups have greater RAR_A), and a possible correlation between RAR_A and the N/L ratio. Our analysis indicates that RAR_A is correlated with θE\theta_E in our sample, making RAR_A useful to characterize properties like L and N (and possible N/L) in galaxy groups. Additionally, we present evidence suggesting that the Einstein radius evolves with zz.Comment: Accepted for publication in Astronomy & Astrophysics. Typos correcte

    The Orbit of the New Milky Way Globular Cluster FSR1716 =VVV-GC05

    Get PDF
    Indexación: Scopus.We use deep, multi-epoch near-IR images of the VISTA Variables in the Via Lictea (VVV) Survey to measure proper motions (PMs) of stars in the Milky Way globular cluster (GC) FSR1716 = VVV-GC05. The colormagnitude diagram of this object, made by using PM-selected members, shows an extended horizontal branch, nine confirmed RR Lyrae (RRL) members in the instability strip, and possibly several hotter stars extending to the blue. Based on the fundamental-mode (ab-type) RRL stars that move coherently with the cluster, we confirmed that FSR1716 is an Oosterhoff I GC with a mean period aPabn = 0.574 days. Intriguingly, we detect tidal extensions to both sides of this cluster in the spatial distribution of PM-selected member stars. Also, one of the confirmed RRabs is located -11 arcmin in projection from the cluster center, suggesting that FSR1716 may be losing stars due to the gravitational interaction with the Galaxy. We also measure radial velocities (RVs) for five cluster red giants selected using the PMs. The combination of RVs and PMs allow us to compute for the first time the orbit of this GC, using an updated Galactic potential. The orbit results to be confined within|Zmax| < 2.0 kpc, and has eccentricity 0.4 < e < 0.6, with perigalactic distance 1.5 < Rperi (kpc) < 2.3, and apogalactic distance 5.3 < Rapo (kpc) < 6.4. We conclude that, in agreement with its relatively low metallicity ([Fe/H] =-1.4 dex), this is an inner-halo GC plunging into the disk of the Galaxy. As such, this is a unique object with which to test the dynamical processes that contribute to the disruption of Galactic GCs. © 2018. The American Astronomical Society. All rights reserved.https://iopscience.iop.org/article/10.3847/1538-4357/aacd0

    12C/13C isotopic ratios in red-giant stars of the open cluster NGC 6791

    Full text link
    Carbon isotope ratios, along with carbon and nitrogen abundances, are derived in a sample of 11 red-giant members of one of the most metal-rich clusters in the Milky Way, NGC 6791. The selected red-giants have a mean metallicity and standard deviation of [Fe/H]=+0.39+-0.06 (Cunha et al. 2015). We used high resolution H-band spectra obtained by the SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE). The advantage of using high-resolution spectra in the H-band is that lines of CO are well represented and their line profiles are sensitive to the variation of 12C/13C. Values of the 12C/13C ratio were obtained from a spectrum synthesis analysis. The derived 12C/13C ratios varied between 6.3 and 10.6 in NGC 6791, in agreement with the final isotopic ratios from thermohaline-induced mixing models. The ratios derived here are combined with those obtained for more metal poor red-giants from the literature to examine the correlation between 12C/13C, mass, metallicity and evolutionary status.Comment: Accepted for publication in MNRAS, 9 pages, 4 figures, 2 table
    corecore