1,632 research outputs found

    The central parsecs of active galactic nuclei: challenges to the torus

    Full text link
    Type 2 AGN are by definition nuclei in which the broad-line region and continuum light are hidden at optical/UV wavelengths by dust. Via accurate registration of infrared (IR) Very Large Telescope adaptive optics images with optical \textit{Hubble Space Telescope} images we unambiguously identify the precise location of the nucleus of a sample of nearby, type 2 AGN. Dust extinction maps of the central few kpc of these galaxies are constructed from optical-IR colour images, which allow tracing the dust morphology at scales of few pc. In almost all cases, the IR nucleus is shifted by several tens of pc from the optical peak and its location is behind a dust filament, prompting to this being a major, if not the only, cause of the nucleus obscuration. These nuclear dust lanes have extinctions AV≥3−6A_V \geq 3-6 mag, sufficient to at least hide the low-luminosity AGN class, and in some cases are observed to connect with kpc-scale dust structures, suggesting that these are the nuclear fueling channels. A precise location of the ionised gas Hα\alpha and [\textsc{Si\,vii}] 2.48 μ\mum coronal emission lines relative to those of the IR nucleus and dust is determined. The Hα\alpha peak emission is often shifted from the nucleus location and its sometimes conical morphology appears not to be caused by a nuclear --torus-- collimation but to be strictly defined by the morphology of the nuclear dust lanes. Conversely, [\textsc{Si\,vii}] 2.48 μ\mum emission, less subjected to dust extinction, reflects the truly, rather isotropic, distribution of the ionised gas. All together, the precise location of the dust, ionised gas and nucleus is found compelling enough to cast doubts on the universality of the pc-scale torus and supports its vanishing in low-luminosity AGN. Finally, we provide the most accurate position of the NGC 1068 nucleus, located at the South vertex of cloud B.Comment: 23 pages, 10 figures, accepted for publication in MNRA

    Generalized S-space-forms

    Get PDF
    We introduce and study generalized S-space-forms. Moreover, we investigate generalized S-space-forms endowed with an additional structure and we obtain some obstructions for them to be S-manifold

    Introducción a la Cerámica Prehistórica y Protohistórica en Galicia

    Get PDF
    Traballos de Arqueoloxía e Patrimonio (TAPA)[EN] The intention of these works is to show, in a didactic way, what are the properties of Bronze Age and Iron Age pottery in Galicia, done through the chracterization of their production processes.[ES] La intención de estos trabajos es exponer de manera didáctica cómo es la cerámica de la Edad del Bronce y de la Edad del Hierro en Galicia mediante la caracterización de los procesos de producción.Financiación de la edición: Laboratorio de Arqueoloxía e Formas Culturais.Peer reviewe

    The central parsecs of M87: jet emission and an elusive accretion disc

    Full text link
    We present the first simultaneous spectral energy distribution (SED) of M87 core at a scale of 0.4 arcsec (∼32 pc\sim 32\, \rm{pc}) across the electromagnetic spectrum. Two separate, quiescent, and active states are sampled that are characterized by a similar featureless SED of power-law form, and that are thus remarkably different from that of a canonical active galactic nuclei (AGN) or a radiatively inefficient accretion source. We show that the emission from a jet gives an excellent representation of the core of M87 core covering ten orders of magnitude in frequency for both the active and the quiescent phases. The inferred total jet power is, however, one to two orders of magnitude lower than the jet mechanical power reported in the literature. The maximum luminosity of a thin accretion disc allowed by the data yields an accretion rate of <6×10−5 M⊙ yr−1< 6 \times 10^{-5}\, \rm{M_\odot \, yr^{-1}}, assuming 10% efficiency. This power suffices to explain M87 radiative luminosity at the jet-frame, it is however two to three order of magnitude below that required to account for the jet's kinetic power. The simplest explanation is variability, which requires the core power of M87 to have been two to three orders of magnitude higher in the last 200 yr. Alternatively, an extra source of power may derive from black hole spin. Based on the strict upper limit on the accretion rate, such spin power extraction requires an efficiency an order of magnitude higher than predicted from magnetohydrodynamic simulations, currently in the few hundred per cent range.Comment: 18 pages, 6 figures. Accepted for publication in MNRA

    Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years.

    Get PDF
    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil-plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS+Fo), Firesorb (BS+Fi) and ammonium polyphosphate (BS+Ap). Soils (0-2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, 15N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH4 +-N and NO3 --N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS+Ap had the highest levels of soil available P, Na and Al. Plants from BS+Ap plots had higher values of 15N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS+Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS+Ap, where the tallest and widest trees were found, although half of them were either death (the second highest mortality after BS+Fi) or had a distorted trunk. BS+Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil-plant system after 10 years.Peer reviewe
    • …
    corecore