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GENERALIZED S-SPACE-FORMS

Alicia Prieto-Martín,

Luis M. Fernández, and Ana M. Fuentes

Abstract. We introduce and study generalized S-space-forms. Moreover, we
investigate generalized S-space-forms endowed with an additional structure
and we obtain some obstructions for them to be S-manifolds.

1. Introduction

It is an interesting problem to analyze what kind of Riemannian manifolds may
be determined by special pointwise expressions for their curvatures. For instance, it
is well known that the sectional curvatures of a Riemannian manifold determine the
curvature tensor field completely. So, if (M, g) is a connected Riemannian manifold
with dimension greater than 2 and its curvature tensor field R has the pointwise
expression

R(X, Y )Z = λ {g(X, Z)Y − g(Y, Z)X} ,

where λ is a differentiable function on M , then M is a space of constant sectional
curvature, that is, a real-space-form and λ is a constant function.

Further, when the manifold is equipped with some additional structure, it is
sometimes possible to obtain conclusions from the special form of the curvature
tensor field for this structure too. Thus, an almost-Hermitian manifold (M, J, g) is
said to be a generalized complex-space-form [9] if its curvature tensor satisfies

R(X, Y )Z = f1
{

g(Y, Z)X − g(X, Z)Y
}

(1.1)

+ f2
{

g(X, JZ)JY − g(Y, JZ)JX + 2g(X, JY )JZ
}

,

where f1 and f2 are differentiable functions on M . This name derives from the fact
that, when M is a complex-space-form, that is, a Kaehlerian manifold of constant
holomorphic curvature equal to c, the curvature tensor field of M satisfies (1.1)
with f1 = f2 = c/4.
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Since Sasakian-spaces-forms play a similar role in contact metric geometry to
that of complex-space-forms in complex geometry, Alegre, Blair and Carriazo have
defined and studied generalized Sasakian-space forms [1] as those almost-contact
metric manifolds (M, φ, ξ, η, g) whose curvature tensor field satisfies

R(X, Y )Z = f1 {g(Y, Z)X − g(X, Z)Y } +

+ f2 {g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY )φZ}

+ f3 {η(X)η(Z)Y − η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ} ,

f1, f2, f3 being differentiable functions on M . If M is actually a Sasakian-space-
form, that is a Sasakian manifold with constant φ-sectional curvature equal to c,
then f1 = 1

4 (c + 3), f2 = f3 = 1
4 (c − 1).

More in general, Yano [10] introduced the notion of f -structure on a (2n + s)
-dimensional manifold as a tensor field f of type (1,1) and rank 2n satisfying
f3 + f = 0. Almost complex (s = 0) and almost contact (s = 1) structures are
well-known examples of f -structures. In this context, Blair [2] defined K-manifolds
(and particular cases of S-manifolds and C-manifolds) as the analogue of Kaehle-
rian manifolds in the almost complex geometry and of quasi-Sasakian manifolds
in the almost contact geometry and he showed that the curvature of either S-
manifolds or C-manifolds is completely determined by their f -sectional curvatures.
Later, Kobayashi and Tsuchiya [8] got expressions of the curvature tensor field of S-
manifolds and C-manifolds when their f -sectional curvature is constant depending
on such a constant.

For these reasons, we consider that it is interesting to introduce a notion of gen-
eralized S-space-form on metric f -manifolds (see Section 2 for a precise definition of
these manifolds). We observe that this work was made in [5] for metric f -manifolds
with two structure vector fields, giving some interesting examples. Now, we present
the definition for any number of structure vector fields. To this end, we have fol-
lowed the same procedure as in almost complex and almost contact cases, that is,
we have substituted the constants in the expression of the curvature tensor field of
an S-space-form (an S-manifold of constant f -sectional curvature) obtained in [8]
by certain differentiable functions on the manifold. So, S-space-forms are natural
examples of generalized S-space-forms. Furthermore, we check that C-space-forms
are also generalized S-space-forms.

We have organized the communication in the following way. In Section 2 we
review definitions and formulas concerning metric f -manifolds which we shall use
later. In Section 3 we define generalized S-space-forms and study the sectional
curvatures of such manifolds. Moreover, we establish that the writing of the cur-
vature tensor field is unique in terms of a family of differentiable functions on the
manifold if and only if the dimension of the manifold is greater than 2 + s, s being
the number of structure vector fields. In Section 4, we consider a different defini-
tion given by Falcitelli and Pastore in [6], comparing both definitions. Finally, in
Section 5, we study generalized S-space-forms endowed with an additional struc-
ture and the relationships between the functions in such a case. Thus, we prove
that any generalized S-space-form with a metric f -K-contact structure is actually



GENERALIZED S-SPACE-FORMS 153

an S-manifold and we deduce an obstruction for a generalized S-space-form to be
an S-manifold, depending on the functions. The same result holds for a metric f -
contact structure with some additional conditions on the functions. We also study
generalized S-space-forms with an underlying C-structure and, more in general,
with a K-structure.

2. Metric f-manifolds

A Riemannian manifold (M, g) of dimension 2n + s and endowed with an f -
structure f (that is, a tensor field of type (1,1) and rank 2n satisfying f3 + f = 0
[10]) is said to be a metric f -manifold if, moreover, there exist s global vector fields
ξ1, . . . , ξs on M (called structure vector fields) such that, if η1, . . . , ηs are the dual
1-forms of ξ1, . . . , ξs, then

fξα = 0; ηα ◦ f = 0; f2 = −I +

s∑

α=1

ηα ⊗ ξα;

g(X, Y ) = g(fX, fY ) +
s∑

α=1

ηα(X)ηα(Y ),

for any X, Y ∈ X (M) and α = 1, . . . , s. The distribution on M spanned by
the structure vector fields is denoted by M and its complementary orthogonal
distribution is denoted by L. Consequently, T M = L ⊕ M. Moreover, if X ∈ L,
then ηα(X) = 0, for any α = 1, . . . , s and if X ∈ M, then fX = 0.

Let F be the 2-form on M defined by F (X, Y ) = g(X, fY ), for any X, Y ∈
X (M). Since f is of rank 2n, then η1 ∧ · · · ∧ ηs ∧ F n 6= 0 and, particularly, M is
orientable. A metric f -manifold is said to be a metric f -contact manifold if F =
dηα, for any α = 1, . . . , s. On the other hand, a metric f -contact manifold is said
to be a metric f -K-contact manifold if the structure vector fields are Killing vector
fields. When s = 1, metric f -contact manifolds correspond to contact manifolds and
metric f -K-contact manifolds to K-contact manifolds. Furthermore, in a metric
f -K-contact manifold it easy to show that:

(2.1) ∇Xξα = −fX, X ∈ X (M), α = 1, . . . , s.

The f -structure f is said to be normal if [f, f ] + 2
∑s

α=1 ξα ⊗ dηα = 0, where
[f, f ] denotes the Nijenhuis tensor of f . Then, a metric f -manifold is said to be
a K-manifold [2] if it is normal and dF = 0. In a K-manifold M , the structure
vector fields are Killing vector fields [2] and:

(2.2) ∇ξα
ξβ = 0, α, β = 1, . . . , s.

A K-manifold is called an S-manifold if F = dηα, for any α (that is, if it is also
a metric f -K-contact manifold) and a C-manifold if dηα = 0, for any α. Note that,
for s = 0, a K-manifold is a Kaehlerian manifold and, for s = 1, a K-manifold is a
quasi-Sasakian manifold, an S-manifold is a Sasakian manifold and a C-manifold
is a cosymplectic manifold. When s > 2, non-trivial examples can be found in
[2, 3, 7]. Moreover, a K-manifold M is an S-manifold if and only if

∇Xξα = −fX, X ∈ X (M), α = 1, . . . , s,



154 PRIETO-MARTÍN, FERNÁNDEZ, AND FUENTES

and it is a C-manifold if and only if ∇f = 0 [2].
On the other hand, the curvature tensor field R of a K-manifold M satisfies

(2.3) R(ξα, X, ξβ , Y ) = −g(∇Xξβ , ∇Y ξα),

for any X, Y ∈ X (M) and α, β = 1, . . . , s [4].
A plane section π on a metric f -manifold M is said to be an f -section if it is

determined by a unit vector X ∈ L and fX . The sectional curvature K(π) of π is
called an f -sectional curvature. An S-manifold (resp., a C-manifold) is said to be
an S-space-form (resp., a C-space-form) if it has a constant f -sectional curvature
c and then, it is denoted by M(c). In such cases, the curvature tensor field R of
M(c) satisfies

R(X, Y, Z, W ) =
∑

α,β

(
g(fX, fW )ηα(Y )ηβ(Z) − g(fX, fZ)ηα(Y )ηβ(W )

+ g(fY, fZ)ηα(X)ηβ(W ) − g(fY, fW )ηα(X)ηβ(Z)
)

+
c + 3s

4

(
g(fX, fW )g(fY, fZ) − g(fX, fZ)g(fY, fW )

)

+
c − s

4

(
F (X, W )F (Y, Z) − F (X, Z)F (Y, W )

− 2F (X, Y )F (Z, W )
)
,

(2.4)

(resp.,

R(X, Y, Z, W ) =
c

4
(g(fX, fW )g(fY, fZ) − g(fX, fZ)g(fY, fW ))

+ F (X, W )F (Y, Z) − F (X, Z)F (Y, W )

− 2F (X, Y )F (Z, W ))),

(2.5)

for any X, Y, Z, W ∈ X (M) [8].

3. Generalized S-space-forms

A metric f -manifold (M, f, ξ1, . . . , ξs, η1, . . . , ηs, g) is said to be a generalized

S-space-form if there exists a family of differentiable functions on M ,

{F1, F2, Fαβ , Gαβ , Hαβγ},

such that the curvature tensor field R of M satisfies

(3.1) R = F1R1 + F2R2 +

s∑

α,β=1

FαβRαβ +
∑

16α<β6s

GαβR̃αβ +

s∑

α,β,γ=1,
α6=β 6=γ 6=α

HαβγRαβγ ,
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where

R1(X, Y, Z, W ) = g(X, W )g(Y, Z) − g(X, Z)g(Y, W );

R2(X, Y, Z, W ) = F (X, W )F (Y, Z) − F (X, Z)F (Y, W )

− 2F (X, Y )F (Z, W );

Rαβ(X, Y, Z, W ) = g(Y, W )ηα(X)ηβ(Z) − g(X, W )ηα(Y )ηβ(Z)

+ g(X, Z)ηα(Y )ηβ(W ) − g(Y, Z)ηα(X)ηβ(W );

R̃αβ(X, Y, Z, W ) = ηα(X)ηβ(Y )ηβ(Z)ηα(W ) − ηβ(X)ηα(Y )ηβ(Z)ηα(W )

+ ηβ(X)ηα(Y )ηα(Z)ηβ(W ) − ηα(X)ηβ(Y )ηα(Z)ηβ(W );

Rαβγ(X, Y, Z, W ) = ηα(X)ηβ(Y )ηγ(Z)ηα(W ) − ηβ(X)ηα(Y )ηγ(Z)ηα(W )

+ ηβ(X)ηα(Y )ηα(Z)ηγ(W ) − ηα(X)ηβ(Y )ηα(Z)ηγ(W ),

(3.2)

for any X, Y, Z, W ∈ X (M).
This kind of manifold appears as a natural generalization of S-space-forms

because a straightforward computation from (2.4) gives that any S-space-form M(c)
is a generalized S-space-form with functions

F1 = 1
4 (c + 3s); F2 = 1

4 (c − s); Fαα = 1
4 (c + 3s) − 1;

Fαβ = −1 (α 6= β); Gαβ = 1
4 (c + 3s) − 2 (α < β);

Hαβγ = −1 (α 6= β 6= γ 6= α),

where α, β, γ ∈ {1, . . . , s}. Moreover, any C-space-form M(c) is also a generalized
S-space-form. In fact, from (2.5), we only have to take

F1 = F2 = Fαα = Gαβ = c
4 (α < β);

Fαβ = 0 (α 6= β);

Hαβγ = 0 (α 6= β 6= γ 6= α),

where α, β, γ ∈ {1, . . . , s}.

From (3.2) we easily deduce that R̃αα = 0; R̃αβ = R̃βα; Rαββ = R̃αβ ; Rααα =
Rααβ = 0, for any α, β = 1, . . . , s. Furthermore, from (3.1) we get that

R(X, ξα, X, ξβ) = Fαβ ,(3.3)

R(ξα, ξβ , ξγ , ξα) = Hαβγ − Fβγ ,(3.4)

for any unit vector field X ∈ L and any α, β, γ = 1, . . . , s, α 6= β 6= γ 6= α. Then, by
using the symmetries of the curvature tensor field R, from (3.3) and (3.4) together,
we obtain Fαβ = Fβα and Hαβγ = Hαγβ,α, β, γ = 1, . . . , s, α 6= β 6= γ 6= α.

Now, we observe that, if s = 2, (3.1) agrees with (3.1) of [5]. In that pa-
per, more examples of generalized S-space-forms with two structure vector fields
were given and they can be generalized to any s. Thus, pseudo-umbilical, totally
contact-umbilical, totally contact-geodesic, totally umbilical and totally geodesic
hypersurfaces of a generalized S-space-form are also generalized S-space-forms and,
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moreover, the bundle space of a principal toroidal bundle over a Kaehlerian mani-
fold and the warped product of R times a generalized S-space-form are generalized
S-space-forms too.

Next, for the sectional curvatures of a generalized S-space form and by using
(3.1) and (3.2), we can prove the following proposition.

Proposition 3.1. Let M be a generalized S-space-form with functions:

{F1, F2, Fαβ , Gαβ , Hαβγ}.

Then, for any orthonormal vector fields X, Y ∈ L and α, β ∈ {1, . . . , s}, we have

(i) K(X, Y ) = R(X, Y, Y, X) = F1 + 3F2g(X, fY )2.

(ii) H(X) = K(X, fX) = F1 + 3F2.

(iii) K(X, ξα) = F1 − Fαα.

(iv) K(ξα, ξβ) = F1 − Fαα − Fββ + Gαβ , (α < β).

We are going now to study if the writing of the curvature tensor field of a
generalized S-space-form is unique. First, we can prove:

Proposition 3.2. Let M be a (2n + s)-dimensional generalized S-space-form.

If n > 2, the writing of the curvature tensor field R of M in terms of a family of

functions is unique.

Proof. Let us suppose that there exist two families of differentiable functions,
{F1, F2, Fαβ , Gαβ , Hαβγ} and {F ∗

1 , F ∗
2 , F ∗

αβ , G∗
αβ , H∗

αβγ}, such that

(3.5) R = F1R1 + F2R2 +
s∑

α,β=1

FαβRαβ +
∑

16α<β6s

GαβR̃αβ +
s∑

α,β,γ=1,
α6=β 6=γ 6=α

HαβγRαβγ

= F ∗
1 R1 + F ∗

2 R2 +

s∑

α,β=1

F ∗
αβRαβ +

∑

16α<β6s

G∗
αβR̃αβ +

s∑

α,β,γ=1,
α6=β 6=γ 6=α

H∗
αβγRαβγ .

Since n > 2, we can consider a pair of orthonormal vector fields X, Y ∈ L such
that g(X, fY ) = 0. From (3.5) we get that R(X, Y, fX, fY ) = F2 = F ∗

2 and so,
R(X, Y, Y, X) = F1 = F ∗

1 . From (iii) and (iv) of Proposition 3.1 we deduce that
Fαα = F ∗

αα, for any α = 1, . . . , s and Gαβ = G∗
αβ , for any α, β = 1, . . . , s, α < β.

Finally, if X ∈ L is a unit vector field and α, β = 1, . . . , s, α 6= β, from (3.5)
again, we get that R(X, ξα, X, ξβ) = Fαβ = F ∗

αβ and, by using (3.4), Hαβγ = H∗
αβγ ,

for any α, β, γ ∈ {1, . . . , s}, α 6= β 6= γ 6= α. �

Next, what about (2 + s)-dimensional generalized S-space-forms? In this case,
the writing of the curvature tensor field is not unique. Actually, if M is a generalized
S-space-form of dimension 2 + s such that its curvature tensor field R can be
simultaneously written as

R = F1R1 + F2R2 +

s∑

α,β=1

FαβRαβ +
∑

16α<β6s

GαβR̃αβ +

s∑

α,β,γ=1,
α6=β 6=γ 6=α

HαβγRαβγ
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and

R = F ∗
1 R1 + F ∗

2 R2 +

s∑

α,β=1

F ∗
αβRαβ +

∑

16α<β6s

G∗
αβR̃αβ +

s∑

α,β,γ=1,
α6=β 6=γ 6=α

H∗
αβγRαβγ ,

then, given a unit vector field X ∈ L and α, β, γ ∈ {1, . . . , s}, from (3.3), (3.4) and
Proposition 3.1, we obtain the system

F1 − F ∗
1 = 3(F ∗

2 − F2);

F1 − F ∗
1 = Fαα − F ∗

αα;

Fαβ − F ∗
αβ = 0; (α 6= β)

Fαα − F ∗
αα = Gαβ − G∗

αβ ; (α < β)

Fββ − F ∗
ββ = Gαβ − G∗

αβ ; (α < β)

Hαβγ − H∗
αβγ = 0, (α 6= β 6= γ 6= α)

whose general solution is given by

F ∗
1 = F1 + h, F ∗

2 = F2 − 1
3 h, F ∗

αα = Fαα + h,

G∗
αβ = Gαβ + h, F ∗

αβ = Fαβ , H∗
αβγ = Hαβγ ,(3.6)

where h is a differentiable function on M . Consequently, if h 6= 0, the writing of R
in not unique and the functions of two different writings are related by (3.6).

On the other hand, if M is a (2+s)-dimensional generalized S-space-form with
functions {F1, F2, Fαβ , Gαβ , Hαβγ} and we define the functions

{F ∗
1 , F ∗

2 , F ∗
αβ , G∗

αβ , H∗
αβγ}

as in (3.6), for any differentiable function h on M , then we deduce:

R = F1R1 + F2R2 +

s∑

α,β=1

FαβRαβ +
∑

16α<β6s

GαβR̃αβ +

s∑

α,β,γ=1,
α6=β 6=γ 6=α

HαβγRαβγ ,

= F ∗
1 R1 + F ∗

2 R2 +
s∑

α,β=1

F ∗
αβRαβ +

∑

16α<β6s

G∗
αβR̃αβ +

s∑

α,β,γ=1,
α6=β 6=γ 6=α

H∗
αβγRαβγ

−hR1 +
h

3
R2 − h

s∑

α=1

Rαα − h
∑

16α<β6s

R̃αβ .

But it is straightforward to check that

hR1 −
h

3
R2 + h

s∑

α=1

Rαα + h
∑

16α<β6s

R̃αβ = 0

and, consequently, M is also a generalized S-space-form with functions

{F ∗
1 , F ∗

2 , F ∗
αβ , G∗

αβ , H∗
αβγ}.
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4. A different definition

In [6], Falcitelli and Pastore defined a generalized f.pk-space-form as a metric
f.pk-manifold M of dimension 2n + s (actually, a metric f -manifold) endowed

with a family of differentiable functions {F̃1, F̃2, F̃αβ , α, β = 1, . . . , s}, such that

F̃αβ = F̃βα, for any α, β ∈ {1, . . . , s} and such that the curvature tensor field R of
M can be written as

R(X, Y )Z = F̃1
{

g(fX, fZ)f2Y − g(fY, fZ)f2X
}

(4.1)

+ F̃2
{

g(X, fZ)fY + g(Y, fZ)fX + 2g(X, fY )fZ
}

+

s∑

α,β=1

F̃αβ

{
ηα(X)ηb(Z)f2Y − ηα(Y )ηb(Z)f2X

+ g(fY, fZ)ηα(X)ξβ − g(fX, fZ)ηα(Y )ξβ

}
,

for any X, Y, Z ∈ X (M). This definition is more restrictive than the one concerning
generalized S-space-form. In fact, we observe that, from (4.1), R(ξα, ξβ)ξγ = 0, for
any α, β, γ ∈ {1, . . . , s} (this means that the distribution M is flat), but some
examples of generalized S-space-forms not satisfying this condition were presented
in [5].

Moreover, if M is a generalized f.pk-space-form, a straightforward computation
using (3.2) gives

R = F̃1R1 + F̃2R2 + F̃1

{ s∑

α=1

Rαα −
∑

16α<β6s

R̃αβ

}

−

s∑

α,β=1

F̃αβRαβ −

s∑

α,β=1

F̃ααR̃αβ −

s∑

α,β=1,
α6=β

F̃αβ

{ s∑

γ=1,
α6=γ 6=β

Rγαβ

}
.

Consequently, M is a generalized S-space form with functions

F1 = F̃1; F2 = F̃2; Fαα = F̃1 − F̃αα; Fαβ = −F̃αβ (α 6= β);

Gαβ = F̃1 − F̃αα − F̃ββ ; Hαβγ = −F̃βγ .

Conversely, if M is a generalized S-space-form with functions

{F1, F2, Fαβ , Gαβ , Hαβγ}

such that the distribution M is flat, then, from (3.4) we get that Hαβγ = Fβγ , for
any α, β, γ = 1, . . . , s, α 6= β 6= γ 6= α and from (v) of Proposition 3.1, Gαβ =
Fαα + Fββ − F1, 1 6 α < β 6 s. Then, it is easy to check that M is a generalized
f.pk-space-form with functions:

F̃1 = F1; F̃2 = F2; F̃αα = F1 − Fαα; F̃αβ = −Fαβ (α 6= β).

5. Generalized S-space-forms with additional structures

Taking into account the results of the above section, if M is a generalized
S-space-form such that the distribution M is flat (for instance, if M is either a
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metric f -K-contact manifold or a K-manifold), we can apply the results of [6] to
it. Firstly, we can prove:

Theorem 5.1. Let M be a (2n + s)-dimensional generalized S-space-form with

functions {F1, F2, Fαβ , Gαβ , Hαβγ}, such that ∇ξα = −f , for any α = 1, . . . , s.

Then, M is an S-manifold and

F1 = 1
4 (c + 3s); F2 = 1

4 (c − s); Fαα = 1
4 (c + 3s) − 1;

Fαβ = −1 (α 6= β); Gαβ = 1
4 (c + 3s) − 2 (α < β);

Hαβγ = −1 (α 6= β 6= γ 6= α),

where α, β, γ ∈ {1, . . . , s} and c = F1 +3F2. In particular, any generalized S-space-

form with a metric f -K-contact-structure is an S-manifold.

Proof. Since, the condition of the statement implies that the distribution M
is flat, we deduce that M is a generalized f.pk-space-form and we apply Proposition
7 of [6]. For metric f -K-contact manifolds we only have to consider (2.1). �

We point out here that, if n > 2, c becomes constant (see, for example, [7])
and M is actually an S-space-form. Moreover, we deduce:

Corollary 5.1. Let M be a (2n + s)-dimensional generalized S-space-form

with functions {F1, F2, Fαβ , Gαβ , Hαβγ}. If M is an S-manifold, then F1 − F2 = s.

For C-manifolds, we have:

Theorem 5.2. Let M be a (2n + s)-dimensional generalized S-space-form with

functions {F1, F2, Fαβ , Gαβ , Hαβγ} and with an underlying C-structure. Then

F1 = F2 = Fαα = Gαβ = c/4, α < β;(5.1)

Fαβ = Hαβγ = 0, α 6= β 6= γ 6= α,(5.2)

where α, β, γ ∈ {1, . . . , s} and c = F1 + 3F2. Moreover, if n > 1, M is a C-space-

form.

Proof. Since M is a C-manifold and so, a K-manifold, from (2.2), the dis-
tribution M is flat and M is also a generalized f.pk-space.form. Furthermore, the
structure vector fields are parallel and, by using Proposition 8 and Remark 2 of
[6] and applying the relationships obtained in the above section we get the desired
results. Finally, from (3.1), the Ricci tensor field S and the scalar curvature ρ of
M are given by

S(X, Y ) =
(n + 1)c

2

(
g(X, Y ) −

s∑

α=1

ηα(X)ηα(Y )

)

and ρ = n(n + 1)c. Now, from the second Bianchi identity,

∇iρ = 2
∑

j

∇jSj
i ,

where Sj
i denotes the components of the Ricci tensor of type (1,1). Consequently,

(n − 1)dc = 0 and hence, dc = 0 if n > 1. �
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Next, we are going to study generalized S-space-forms with more general struc-
tures. First, we get

Theorem 5.3. Let M be a generalized S-space-form with functions

{F1, F2, Fαβ , Gαβ , Hαβγ}.

If M is a K-manifold, then

F1 + Gαβ = Fαα + Fββ ; F1 − Fαα > 0, with 1 6 α < β 6 s;

Hαβγ = Fβγ , for any α, β, γ = 1, . . . , s such that α 6= β 6= γ 6= α.

Proof. Since M is a K-manifold, from (2.2) we get that the distribution M is
flat. Thus, M is a generalized f.pk-space-form and by using the results of Section
4, we deduce that Gαβ = Fαα + Fββ − F1, 1 6 α < β 6 s and Hαβγ = Fβγ ,
α 6= β 6= γ 6= α. Now, from (2.3) together (iii) of Proposition 3.1, we complete the
proof. �

Finally, for metric f -contact structures, we can prove the following theorem.

Theorem 5.4. Let M be a (2n + s)-dimensional generalized S-space-form with

functions {F1, F2, Fαβ , Gαβ , Hαβγ}. If M is a metric f -contact manifold and

F1 − Fαα = Fββ − Gαβ = 1, 1 6 α < β 6 s;

Fαα = Fββ , for any α, β = 1, . . . , s,

then M is an S-manifold.

Proof. First, from (v) of Proposition 3.1 and the hypothesis, we deduce
that K(ξα, ξβ) = 0. Moreover, a direct computation by using (3.1) shows that
S(ξα, ξα) = 2n(F1 − Fαα) = 2n, α = 1, . . . , s, where S is the Ricci curvature tensor
of M . Then, by using Theorem 3.8 of [4], we obtain that the structure vector fields
are Killing vector fields, that is, M is a metric f -K-contact manifold. Thus, from
Theorem 5.1, it is an S-manifold. �
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