14 research outputs found

    Efecto de la suplementación con B-Hidroxi B-Metilbutirato (HMB) y/o creatina en el rendimiento del remo tradicional de trainera

    Get PDF
    201 p.El monohidrato de creatina (CrM) y el ß-hidroxi ß-metilbutirato (HMB) son suplementosdeportivos ampliamente estudiados. Sin embargo, no está claro cómo actúan cuando se utilizanconjuntamente en el ámbito deportivo. Hay que añadir que la incógnita es todavía mayor, cuandohablamos de un deporte de carácter predominantemente aeróbico como el remoLos objetivos de esta tesis han sido: 1) determinar mediante una revisión sistemática la eficaciade mezclar CrM más HMB en comparación con sus efectos aislados sobre el rendimiento deportivo, lacomposición corporal, los marcadores de daño muscular inducidos por el ejercicio (EIMD) y lashormonas anabólico-catabólicas. 2) determinar la eficacia y el grado de potenciación de 10 semanas desuplementación con CrM más HMB en el rendimiento deportivo, que se midió mediante una pruebaincremental en remeros tradicionales de élite masculinos. 3) determinar el efecto y el grado depotenciación de 10 semanas de suplementación con CrM más HMB en los EIMD y hormonasanabólicas/catabólicas.En base a los objetivos planteados, los principales resultados de la tesis indican que: 1) Lacombinación de CrM más 3 g/día de HMB durante 1¿6 semanas podría producir efectos positivos en elrendimiento deportivo (fuerza y rendimiento anaeróbico) y durante 4 semanas en la composición corporal(aumento de grasa masa libre y disminución de la masa grasa). 2) La ingesta de CrM más HMB durante10 semanas mostró un efecto sinérgico sobre la potencia aeróbica durante una prueba incremental. 3) Lacombinación de CrM más HMB presentó un efecto sinérgico sobre la testosterona y la ratiotestosterona/cortisol y un efecto antagonista sobre el cortisol en comparación con la suma de lasuplementación individual o aisladaLas conclusiones obtenidas en la presente tesis doctoral indican que la combinación de estos dossuplementos puede ser de gran ayuda para los profesionales que rodean al deportista para mejorar elrendimiento aeróbico y la recuperación

    Effects of plyometric jump training on running economy in endurance runners: A systematic review and meta-analysis

    Get PDF
    Running economy (RE) has a strong relationship with distance running performance and is defined as the energy demand for a given velocity. Plyometric jump training may improve RE. The present study aimed to assess the effects of plyometric jump training on endurance runners’ running economy and to estimate the effectiveness of program duration, training frequency, total sessions, age, training status and velocity. A literature search was performed using PubMed/MEDLINE, Web of Science, and SCOPUS databases. Subgroup and single training factor analyses of program duration, frequency, total sessions, chronological age, training status, and running velocity were performed. A random-effects model for meta-analyses was used. Eighteen studies were selected for the systematic review and 10 for the meta-analysis. A trivial effect was noted for plyometric jump training on running economy (ES=0.19). However, plyometric jump training combined with resistance training revealed a large effect on running economy (ES=1.34). Greater running economy improvements were noted after training interventions with >15 total sessions (ES=1.00), >7 weeks (ES=0.95) and >2 days/week (ES=0.89). The youngest (ES=0.95) and highly trained participants (ES=0.94) with faster velocities (ES=0.95) obtained better results. Our findings highlight the effect of plyometric jump training that may improve running economy, particularly in combination with resistance training, after longer-term interventions (i.e., >15 total sessions, >7 weeks), with greater frequency, and among younger and more highly trained runners, especially during running at higher competitive velocities

    Effects of Arginine Supplementation on Athletic Performance Based on Energy Metabolism: A Systematic Review and Meta-Analysis

    Get PDF
    Producción CientíficaNitric oxide related ergogenic aids such as arginine (Arg) have shown to impact positively on sport performance through several physiological and metabolic mechanisms. However, research results have shown to be controversial. The great differences regarding required metabolic pathways and physiological demands between aerobic and anaerobic sport disciplines could be the reasons. The aim of this systematic review and meta-analysis was to evaluate the effects of Arg supplementation on aerobic (≤VO2max) and anaerobic (>VO2max) performance. Likewise, to show the effective dose and timing of this supplementation. A structured search was carried out in accordance with PRISMA® (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement and PICOS guidelines in PubMed/MEDLINE, Web of Science (WOS), and Scopus databases from inception to January 2020. Eighteen studies were included which compare Arg supplementation with placebo in an identical situation and testing its effects on aerobic and anaerobic performance tests. Trials analyzing supplementation with other supplements were removed and there was not athlete’s level, gender, ethnicity, or age filters. The performed meta-analysis included 15 studies and random effects model and pooled standardized mean differences (SMD) were used according to Hedges’ g. Results revealed that Arg supplementation could improve aerobic (SMD, 0.84; 95% CI, 0.12 to 1.56; magnitude of SMD (MSMD), large; I2, 89%; p = 0.02) and anaerobic (SMD, 0.24; 95% CI, 0.05 to 0.43; MSMD, small; I2, 0%; p = 0.01) performance tests. In conclusion, acute Arg supplementation protocols to improve aerobic and anaerobic performance should be adjusted to 0.15 g/kg of body weight ingested between 60–90 min before. Moreover, chronic Arg supplementation should include 1.5–2 g/day for 4–7 weeks in order to improve aerobic performance, and 10–12 g/day for 8 weeks to enhance anaerobic performance

    Effects of Citrulline Supplementation on Different Aerobic Exercise Performance Outcomes: A Systematic Review and Meta-Analysis

    Get PDF
    Supplementation with Citrulline (Cit) has been shown to have a positive impact on aerobic exercise performance and related outcomes such as lactate, oxygen uptake (VO2) kinetics, and the rate of perceived exertion (RPE), probably due to its relationship to endogenous nitric oxide production. However, current research has shown this to be controversial. The main objective of this systematic review and meta-analysis was to analyze and assess the effects of Cit supplementation on aerobic exercise performance and related outcomes, as well as to show the most suitable doses and timing of ingestion. A structured literature search was carried out by the PRISMA® (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and PICOS guidelines in the following databases: Pubmed/Medline, Scopus, and Web of Science (WOS). A total of 10 studies were included in the analysis, all of which exclusively compared the effects of Cit supplementation with those of a placebo group on aerobic performance, lactate, VO2, and the RPE. Those articles that used other supplements and measured other outcomes were excluded. The meta-analysis was carried out using Hedges’ g random effects model and pooled standardized mean differences (SMD). The results showed no positive effects of Cit supplementation on aerobic performance (pooled SMD = 0.15; 95% CI (−0.02 to 0.32); I2, 0%; p = 0.08), the RPE (pooled SMD = −0.03; 95% CI (−0.43 to 0.38); I2, 49%; p = 0.9), VO2 kinetics (pooled SMD = 0.01; 95% CI (−0.16 to 0.17); I2, 0%; p = 0.94), and lactate (pooled SMD = 0.25; 95% CI (−0.10 to 0.59); I2, 0%; p = 0.16). In conclusion, Cit supplementation did not prove to have any benefits for aerobic exercise performance and related outcomes. Where chronic protocols seemed to show a positive tendency, more studies in the field are needed to better understand the effects

    Effects of Arginine Supplementation on Athletic Performance Based on Energy Metabolism: A Systematic Review and Meta-Analysis

    Get PDF
    [EN] Nitric oxide related ergogenic aids such as arginine (Arg) have shown to impact positively on sport performance through several physiological and metabolic mechanisms. However, research results have shown to be controversial. The great differences regarding required metabolic pathways and physiological demands between aerobic and anaerobic sport disciplines could be the reasons. The aim of this systematic review and meta-analysis was to evaluate the effects of Arg supplementation on aerobic (≤VO2 max) and anaerobic (>VO2 max) performance. Likewise, to show the effective dose and timing of this supplementation. A structured search was carried out in accordance with PRISMA® (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement and PICOS guidelines in PubMed/MEDLINE, Web of Science (WOS), and Scopus databases from inception to January 2020. Eighteen studies were included which compare Arg supplementation with placebo in an identical situation and testing its effects on aerobic and anaerobic performance tests. Trials analyzing supplementation with other supplements were removed and there was not athlete’s level, gender, ethnicity, or age filters. The performed meta-analysis included 15 studies and random effects model and pooled standardized mean differences (SMD) were used according to Hedges’ g. Results revealed that Arg supplementation could improve aerobic (SMD, 0.84; 95% CI, 0.12 to 1.56; magnitude of SMD (MSMD), large; I2, 89%; p = 0.02) and anaerobic (SMD, 0.24; 95% CI, 0.05 to 0.43; MSMD, small; I2, 0%; p = 0.01) performance tests. In conclusion, acute Arg supplementation protocols to improve aerobic and anaerobic performance should be adjusted to 0.15 g/kg of body weight ingested between 60–90 min before. Moreover, chronic Arg supplementation should include 1.5–2 g/day for 4–7 weeks in order to improve aerobic performance, and 10–12 g/day for 8 weeks to enhance anaerobic performanceS

    Effects of Probiotic Supplementation on Exercise with Predominance of Aerobic Metabolism in Trained Population: A Systematic Review, Meta-Analysis and Meta-Regression

    Get PDF
    The scientific literature about probiotic intake and its effect on sports performance is growing. Therefore, the main aim of this systematic review, meta-analysis and meta-regression was to review all information about the effects of probiotic supplementation on performance tests with predominance of aerobic metabolism in trained populations (athletes and/or Division I players and/or trained population: ≥8 h/week and/or ≥5 workouts/week). A structured search was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA®) statement and PICOS guidelines in PubMed/MEDLINE, Web of Science (WOS), and Scopus international databases from inception to 1 November 2021. Studies involving probiotic supplementation in trained population and execution of performance test with aerobic metabolism predominance (test lasted more than 5 min) were considered for inclusion. Fifteen articles were included in the final systematic review (in total, 388 participants were included). After 3 studies were removed due to a lack of data for the meta-analysis and meta-regression, 12 studies with 232 participants were involved. With the objective of assessing the risk of bias of included studies, Cochrane Collaboration Guidelines and the Physiotherapy Evidence Database (PEDro) scale were performed. For all included studies the following data was extracted: authors, year of publication, study design, the size of the sample, probiotic administration (dose and time), and characteristics of participants. The random effects model and pooled standardized mean differences (SMDs) were used according to Hedges’ g for the meta-analysis. In order to determine if dose and duration covariates could predict probiotic effects, a meta-regression was also conducted. Results showed a small positive and significant effect on the performance test with aerobic metabolic predominance (SMD = 0.29; CI = 0.08–0.50; p < 0.05). Moreover, the subgroup analysis displayed significant greater benefits when the dose was ≥30 × 109 colony forming units (CFU) (SMD, 0.47; CI, 0.05 to 0.89; p < 0.05), when supplementation duration was ≤4 weeks (SMD, 0.44; CI, 0.05 to 0.84; p < 0.05), when single strain probiotics were used (SMD, 0.33; CI, 0.06 to 0.60; p < 0.05), when participants were males (SMD, 0.30; CI, 0.04 to 0.56; p < 0.05), and when the test was performed to exhaustion (SMD, 0.45; CI, 0.05 to 0.48; p < 0.05). However, with references to the findings of the meta-regression, selected covariates did not predict probiotic effects in highly trained population. In summary, the current systematic review and meta-analysis supported the potential effects of probiotics supplementation to improve performance in a test in which aerobic metabolism is predominant in trained population. However, more research is needed to fully understand the mechanisms of action of this supplement

    Effect of ten weeks of creatine monohydrate plus HMB supplementation on athletic performance tests in elite male endurance athletes

    Get PDF
    Producción CientíficaCreatine monohydrate (CrM) and β-hydroxy β-methylbutyrate (HMB) are common ergogenic aids in the field of sports and are frequently used in an isolated way. However, there are a few studies that have investigated the effect of combining both supplements on different variables related to performance, with controversial results. Therefore, the main purpose of this study was to determine the efficacy and the degree of potentiation of 10 weeks of CrM plus HMB supplementation on sports performance, which was measured by an incremental test to exhaustion in elite male traditional rowers. In this placebo-controlled, double-blind trial, 10-week study, participants (n = 28) were randomized to a placebo group (PLG; n = 7), CrM group (0.04 g/kg/day of CrM; n = 7), HMB group (3 g/day of HMB; n = 7) and CrM-HMB group (0.04 g/kg/day of CrM plus 3 g/day of HMB; n = 7). Before and after 10 weeks of different treatments, an incremental test was performed on a rowing ergometer to calculate the power that each rower obtained at the anaerobic threshold (WAT), and at 4 mmol (W4) and 8 mmol (W8) of blood lactate concentration. There were no significant differences in WAT and W4 among groups or in body composition. However, it was observed that the aerobic power achieved at W8 was significantly higher in the CrM-HMB group than in the PLG, CrM and HMB groups (p < 0.001; η2p = 0.766). Likewise, a synergistic effect of combined supplementation was found for the sum of the two supplements separately at WAT (CrM-HMBG = 403.19% vs. CrMG+HMBG = 337.52%), W4 (CrM-HMBG = 2736.17% vs. CrMG+HMBG = 1705.32%) and W8 (CrM-HMBG = 1293.4% vs. CrMG+HMBG = 877.56%). In summary, CrM plus HMB supplementation over 10 weeks showed a synergistic effect on aerobic power (measured as WAT, W4, and W8) during an incremental test but had no influence muscle mass

    Long-term effect of combination of creatine monohydrate plus β-Hydroxy β-Methylbutyrate (HMB) on exercise-induced muscle damage and anabolic/catabolic hormones in elite male endurance athletes

    Get PDF
    Producción CientíficaCreatine monohydrate (CrM) and β-hydroxy β-methylbutyrate (HMB) are widely studied ergogenic aids. However, both supplements are usually studied in an isolated manner. The few studies that have investigated the effect of combining both supplements on exercise-induced muscle damage (EIMD) and hormone status have reported controversial results. Therefore, the main purpose of this study was to determine the effect and degree of potentiation of 10 weeks of CrM plus HMB supplementation on EIMD and anabolic/catabolic hormones. This study was a double-blind, placebo-controlled trial where participants (n = 28) were randomized into four different groups: placebo group (PLG; n = 7), CrM group (CrMG; 0.04 g/kg/day of CrM; n = 7), HMB group (HMBG; 3 g/day of HMB; n = 7), and CrM-HMB group (CrM-HMBG; 0.04 g/kg/day of CrM plus 3 g/day of HMB; n = 7). Before (baseline, T1) and after 10 weeks of supplementation (T2), blood samples were collected from all rowers. There were no significant differences in the EIMD markers (aspartate aminotransferase, lactate dehydrogenase, and creatine kinase) among groups. However, we observed significant differences in CrM-HMBG with respect to PLG, CrMG, and HMBG on testosterone (p = 0.006; η2p = 0.454) and the testosterone/cortisol ratio (T/C; p = 0.032; η2p = 0.349). Moreover, we found a synergistic effect of combined supplementation on testosterone (CrM-HMBG = −63.85% vs. CrMG + HMBG = −37.89%) and T/C (CrM-HMBG = 680% vs. CrMG + HMBG = 57.68%) and an antagonistic effect on cortisol (CrM-HMBG = 131.55% vs. CrMG + HMBG = 389.99%). In summary, the combination of CrM plus HMB showed an increase in testosterone and T/C compared with the other groups after 10 weeks of supplementation. Moreover, this combination presented a synergistic effect on testosterone and T/C and an antagonistic effect on cortisol compared with the sum of individual or isolated supplementation

    Effect of the Combination of Creatine Monohydrate Plus HMB Supplementation on Sports Performance, Body Composition, Markers of Muscle Damage and Hormone Status: A Systematic Review

    Get PDF
    Although there are many studies showing the isolated effect of creatine monohydrate (CrM) and beta-hydroxy beta-methylbutyrate (HMB), it is not clear what effect they have when they are combined. The main purpose of this systematic review was to determine the efficacy of mixing CrM plus HMB in comparison with their isolated effects on sports performance, body composition, exercise induced markers of muscle damage, and anabolic-catabolic hormones. This systematic review was carried out in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement guidelines and the PICOS model, for the definition of the inclusion criteria. Studies were found by searching PubMed/MEDLINE, Web of Science (WOS), and Scopus electronic databases from inception to July 3rd 2019. Methodological quality and risk of bias were assessed by two authors independently, and disagreements were resolved by third-party evaluation, in accordance with the Cochrane Collaboration Guidelines samples. The literature was examined regarding the effects of the combination of CrM plus HMB on sport performance using several outcome variables (athletic performance, body composition, markers of muscle damage, and hormone status). This systematic review included six articles that investigated the effects of CrM plus HMB on sport performance (two on strength performance, showing improvements in one of them; three on anaerobic performance, presenting enhancements in two of them; and one on aerobic performance, not presenting improvements), body composition (three on body mass, showing improvements in one of them; two on fat free mass, presenting increases in one of them; and two on fat mass, showing decreases in one of them) and markers of muscle damage and hormone status (four on markers of muscle damage and one on anabolic-catabolic hormones, not showing benefits in any of them). In summary, the combination of 3-10 g/day of CrM plus 3 g/day of HMB for 1-6 weeks could produce potential positive effects on sport performance (strength and anaerobic performance) and for 4 weeks on body composition (increasing fat free mass and decreasing fat mass). However, this combination seems to not show positive effects relating to markers of exercise-induced muscle damage and anabolic-catabolic hormones

    Epidemiology of children's swimming competence and water safety

    Get PDF
    IntroductionThe main purpose of this study was to investigate children's swimming competence in primary schools of districts in Vojvodina, Serbia.MethodsIncluded subjects were primary school students from first to eighth grade (N = 2,778; male = 1,454, female = 1,324; age = 10.73 ± 2.1 years). We used Swimming Competence Questionnaire to acquire and analyze their swimming experience, non-fatal aquatic events, and demographics. For the statistical analysis, logistic regression and hierarchical multiple regression were used to evaluate if the factors and SC and NFAE were associated. The analyses were carried out by using SPSS® software version 24.0 (SPSS, Inc., Chicago, Illinois, USA).ResultsFamilies with more income and education generally have children with more swimming competence, experience, knowledge, and skills related to water safety. First step in analysis revealed that gender (β = 0.05, p &lt; 0.01), education level (β = 0.06, p &lt; 0.01) age (β = 0.171, p &lt; 0.01), and family income (β = 0.04, p &lt; 0.01) were significant swimming competence (SC) predictors (R2 = 0.04). Age (OR = 1.15, p &lt; 0.01) was the only significant predictor in Step 1 predicting non-fatal aquatic events (NFAE). In Step 2, variables associated with SC were swimming location (ΔR2 = 0.06, p &lt; 0.01), swimming experience (ΔR2 = 0.16, p &lt; 0.01), swimming accessibility (ΔR2 = 0.05, p &lt; 0.01), and learning experience (ΔR2 = 0.03, p &lt; 0.01) (total R2 = 0.26 to 0.47, p &lt; 0.01). Only a minority of participants reported that they could not swim further than 5 meters using general stroke (37.15%).ConclusionNational education trainers programs must be prioritized with the primary strategy of transferring knowledge to swimming and water safety. Families with lower income must be included without exceptions. This is perhaps a key factor in preventing NFAE, increasing SC, and increasing water safety
    corecore