2,479 research outputs found

    Different epigenetic states define syncytiotrophoblast and cytotrophoblast nuclei in the trophoblast of the human placenta.

    Get PDF
    INTRODUCTION: The syncytiotrophoblast (STB) epithelial covering of the villous tree in the human placenta is a multi-nucleated syncytium that is sustained by continuous incorporation of differentiating cytotrophoblast (CTB) cells. STB nuclei display a variety of morphologies, but are generally more condensed in comparison to CTB nuclei. Here, we consider whether this condensation is a feature of epigenetic regulation of chromatin structure. METHODS: Semi-quantitative immunohistochemical investigations of a panel of histone modifications were performed to determine the relative proportions in CTB and STB nuclear populations. We also investigated the patterns of DNA methylation and distribution of DNA methyltransferases enzymes in these populations. RESULTS: Unexpectedly DNA methylation, and H3K9me3 and H3K27me3, which are modifications associated with heterochromatin, are present at lower levels in STB nuclei compared to CTB, despite the intensive condensation in the former nuclear population and the progenitor state of the latter. By contrast, STB nuclei are enriched for H4K20me3, which is also associated with repressive states. 5'hydroxymethylcytosine immunoreactivity is higher in STB, with intense staining observed in the highly condensed nuclei within syncytial knots. DISCUSSION: Cell-type specific epigenetic states exist within the trophoblast populations potentially regulating their different functions and developmental properties and suggesting non-canonical epigenetic states associated with the properties of these cells.This work was funded by a studentship from the Anatomical Society of Great Britain and Ireland. The study was also supported by the Centre for Trophoblast Research.This is the accepted manuscript. The final version is available at http://www.sciencedirect.com/science/article/pii/S0143400415009248

    Perturbations to the IGF1 growth pathway and adult energy homeostasis following disruption of mouse chromosome 12 imprinting

    Get PDF
    AIM: Disruption to insulin-like growth factor (IGF) signalling pathways during early life causes growth retardation and defects of developing metabolic organs that can alter set points of energy homeostasis for a lifetime. Inheritance of two maternal copies of human chromosome 14q32.2 (Temple syndrome) causes severe foetal growth retardation and post-natal failure to thrive. Disruption of imprinted gene dosage in the orthologous region on mouse chromosome 12 also affects growth. Here, we investigated whether altering chromosome 12-imprinted gene dosage can affect IGF signalling. METHODS: We investigated mice with a transgene insertion at the imprinted domain of chromosome 12. This lesion causes misexpression of neighbouring genes such that the expression of non-coding RNAs is elevated, and levels of delta-like homologue 1 (Dlk1), retrotransposon-like 1 (Rtl1) and deiodinase 3 (Dio3) transcripts are reduced. RESULTS: We observed three key phenotypes in these mice: (i) embryonic growth retardation associated with altered expression of IGF1 binding proteins, (ii) peri-natal failure to thrive accompanied by hypothyroidism and low serum IGF1. Unexpectedly this phenotype was growth hormone independent. (iii) Adult animals had reduced glucose tolerance as a result of endocrine pancreatic insufficiency. CONCLUSIONS: We propose that all of these phenotypes are attributable to impaired IGF action and show for the first time that the chromosome 12 cluster in the mouse is an imprinted locus that modulates the IGF signalling pathway. We propose that growth retardation observed in human Temple syndrome might have a similar cause

    Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis.

    Get PDF
    Genomic imprinting is implicated in the control of gene dosage in neurogenic niches. Here we address the importance of Igf2 imprinting for murine adult neurogenesis in the subventricular zone (SVZ) and in the subgranular zone (SGZ) of the hippocampus in vivo. In the SVZ, paracrine IGF2 is a cerebrospinal fluid and endothelial-derived neurogenic factor requiring biallelic expression, with mutants having reduced activation of the stem cell pool and impaired olfactory bulb neurogenesis. In contrast, Igf2 is imprinted in the hippocampus acting as an autocrine factor expressed in neural stem cells (NSCs) solely from the paternal allele. Conditional mutagenesis of Igf2 in blood vessels confirms that endothelial-derived IGF2 contributes to NSC maintenance in SVZ but not in the SGZ, and that this is regulated by the biallelic expression of IGF2 in the vascular compartment. Our findings indicate that a regulatory decision to imprint or not is a functionally important mechanism of transcriptional dosage control in adult neurogenesis.This work was supported by grants from Ministerio de Economía y Competitividad (SAF2012-40107), Generalitat Valenciana (Programa ACOMP2014-258) and Fundación BBVA to SRF and grants from the MRC, Wellcome Trust and EU FP7 Ingenium Training Network to AFS. AW and TRM were supported by the Association for International Cancer Research and Medical Research Council, UK.SRF was a recipient of a Herchel-Smith fellowship and currently is a Ramón y Cajal investigator. ADM is funded by a Spanish FPU fellowship program of the Ministerio de Educación, Cultura y Deporte. AR was from the Erasmus Placement Program.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms926

    Non-CG DNA methylation is a biomarker for assessing endodermal differentiation capacity in pluripotent stem cells.

    Get PDF
    Non-CG methylation is an unexplored epigenetic hallmark of pluripotent stem cells. Here we report that a reduction in non-CG methylation is associated with impaired differentiation capacity into endodermal lineages. Genome-wide analysis of 2,670 non-CG sites in a discovery cohort of 25 phenotyped human induced pluripotent stem cell (hiPSC) lines revealed unidirectional loss (Δβ=13%, P<7.4 × 10(-4)) of non-CG methylation that correctly identifies endodermal differentiation capacity in 23 out of 25 (92%) hiPSC lines. Translation into a simplified assay of only nine non-CG sites maintains predictive power in the discovery cohort (Δβ=23%, P<9.1 × 10(-6)) and correctly identifies endodermal differentiation capacity in nine out of ten pluripotent stem cell lines in an independent replication cohort consisting of hiPSCs reprogrammed from different cell types and different delivery systems, as well as human embryonic stem cell (hESC) lines. This finding infers non-CG methylation at these sites as a biomarker when assessing endodermal differentiation capacity as a readout.We thank Kerra Pearce (UCL Genomics) for array processing, and Tim Fell and Jonathan Best (CellCentric), Jason Wray (UCL) and Rosemary Drake (TAP Biosystems) for discussions. We also thank Minal Patel, Chris Kirton, Anja Kolb-Kokocinski, Willem H. Ouwehand, Richard Durbin and Fiona M. Watt on behalf of the Human Induced Pluripotent Stem Cell Initiative (HipSci) funded by grant WT098503 from the Wellcome Trust and the Medical Research Council, for sharing data and materials. This work was supported in part by a TSB/EPSRC grant (TS/H000933/1). The Vallier lab is supported by the Cambridge Hospitals National Institute for Health Research Biomedical Research Center and an ERC Starting Grant (Relieve IMDS). F.A.C.S. is funded by a PhD studentship from Fundação para a Ciência e a Tecnologia (SFRH/BD/69033/2010). The Ferguson-Smith lab is supported by grants from the MRC and Wellcome Trust, and EU-FP7 projects EPIGENESYS (257082) and BLUEPRINT (282510). The Beck lab is supported by the Wellcome Trust (084071), a Royal Society Wolfson Research Merit Award (WM100023), and EU-FP7 projects EPIGENESYS (257082) and BLUEPRINT (282510).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1045

    Molecular Determinants of S100B Oligomer Formation

    Get PDF
    Background: S100B is a dimeric protein that can form tetramers, hexamers and higher order oligomers. These forms have been suggested to play a role in RAGE activation. Methodology/Principal Findings: Oligomerization was found to require a low molecular weight trigger/cofactor and could not be detected for highly pure dimer, irrespective of handling. Imidazol was identified as a substance that can serve this role. Oligomerization is dependent on both the imidazol concentration and pH, with optima around 90 mM imidazol and pH 7, respectively. No oligomerization was observed above pH 8, thus the protonated form of imidazol is the active species in promoting assembly of dimers to higher species. However, disulfide bonds are not involved and the process is independent of redox potential. The process was also found to be independent of whether Ca 2+ is bound to the protein or not. Tetramers that are purified from dimers and imidazol by gel filtration are kinetically stable, but dissociate into dimers upon heating. Dimers do not revert to tetramer and higher oligomer unless imidazol is again added. Both tetramers and hexamers bind the target peptide from p53 with retained stoichiometry of one peptide per S100B monomer, and with high affinity (lgK = 7.360.2 and 7.260.2, respectively in 10 mM BisTris, 5 mM CaCl 2, pH 7.0), which is less than one order of magnitude reduced compared to dimer under the same buffer conditions. Conclusion/Significance: S100B oligomerization requires protonated imidazol as a trigger/cofactor. Oligomers ar

    How Can I Drink Safely?; Perception Versus the Reality of Alcohol Consumption

    Get PDF
    This article investigates differences between perception and actual consumption of alcohol in young adults within the UK, suggesting that inaccurate information in the public domain may hamper those seeking to drink safely plus the development of moderate drinking cultures. Results confirm that inaccurate information may be preventing the development of safe drinking behaviours among certain groups. In addition, they indicate that some groups choose to ignore safe consumption limits in particular circumstances. Results indicate that many government strategies aimed at reducing unsafe drinking behaviour are inaccurately targeted; changing male public consumption behaviour may trigger changes in female behaviour

    Imprinting methylation in SNRPN and MEST1 in adult blood predicts cognitive ability

    Get PDF
    Genomic imprinting is important for normal brain development and aberrant imprinting has been associated with impaired cognition. We studied the imprinting status in selected imprints (H19, IGF2, SNRPN, PEG3, MEST1, NESPAS, KvDMR, IG-DMR and ZAC1) by pyrosequencing in blood samples from longitudinal cohorts born in 1936 (n = 485) and 1921 (n = 223), and anterior hippocampus, posterior hippocampus, periventricular white matter, and thalamus from brains donated to the Aberdeen Brain Bank (n = 4). MEST1 imprint methylation was related to childhood cognitive ability score (-0.416 95% CI -0.792,-0.041; p = 0.030), with the strongest effect evident in males (-0.929 95% CI -1.531,-0.326; p = 0.003). SNRPN imprint methylation was also related to childhood cognitive ability (+0.335 95%CI 0.008,0.663; p = 0.045). A significant association was also observed for SNRPN methylation and adult crystallised cognitive ability (+0.262 95%CI 0.007,0.517; p = 0.044). Further testing of significant findings in a second cohort from the same region, but born in 1921, resulted in similar effect sizes and greater significance when the cohorts were combined (MEST1; -0.371 95% CI -0.677,-0.065; p = 0.017; SNRPN; +0.361 95% CI 0.079,0.643; p = 0.012). For SNRPN and MEST1 and four other imprints the methylation levels in blood and in the five brain regions were similar. Methylation of the paternally expressed, maternally methylated genes SNRPN and MEST1 in adult blood was associated with cognitive ability in childhood. This is consistent with the known importance of the SNRPN containing 15q11-q13 and the MEST1 containing 7q31-34 regions in cognitive function. These findings, and their sex specific nature in MEST1, point to new mechanisms through which complex phenotypes such as cognitive ability may be inherited. These mechanisms are potentially relevant to both the heritable and non-heritable components of cognitive ability. The process of epigenetic imprinting-within SNRPN and MEST1 in particular-and the factors that influence it, are worthy of further study in relation to the determinants of cognitive ability
    corecore