1,246 research outputs found
Formal Context Generation using Dirichlet Distributions
We suggest an improved way to randomly generate formal contexts based on
Dirichlet distributions. For this purpose we investigate the predominant way to
generate formal contexts, a coin-tossing model, recapitulate some of its
shortcomings and examine its stochastic model. Building up on this we propose
our Dirichlet model and develop an algorithm employing this idea. By comparing
our generation model to a coin-tossing model we show that our approach is a
significant improvement with respect to the variety of contexts generated.
Finally, we outline a possible application in null model generation for formal
contexts.Comment: 16 pages, 7 figure
Recommended from our members
Behavioral and epigenetic consequences of oxytocin treatment at birth.
Oxytocin is used in approximately half of all births in the United States during labor induction and/or augmentation. However, the effects of maternal oxytocin administration on offspring development have not been fully characterized. Here, we used the socially monogamous prairie vole to examine the hypothesis that oxytocin exposure at birth can have long-term developmental consequences. Maternally administered oxytocin increased methylation of the oxytocin receptor (Oxtr) in the fetal brain. As adults, oxytocin-exposed voles were more gregarious, with increased alloparental caregiving toward pups and increased close social contact with other adults. Cross-fostering indicated that these effects were the result of direct action on the offspring, rather than indirect effects via postnatal changes in maternal behavior. Male oxytocin-exposed offspring had increased oxytocin receptor density and expression in the brain as adults. These results show that long-term effects of perinatal oxytocin may be mediated by an epigenetic mechanism
Lower Bounds for Bruss' Odds Problem with Multiple Stoppings
We give asymptotic lower bounds of the value for Bruss' optimal stopping
problem with multiple stopping chances. It interestingly consists of the
asymptotic threshold values in the optimal multiple stopping strategy. Another
interesting implication of the result is that the asymptotic value for each
secretary problem with multiple stoppings is in fact a typical lower bound in a
much more general class of multiple stopping problems as modifications of odds
problem.Comment: 41 pages, 4 figure
Human exercise-induced circulating progenitor cell mobilization is nitric oxide-dependent and is blunted in South Asian men
This article is available open access through the publisher’s website. Copyright @ 2010 American Heart Foundation.Objective— Circulating progenitor cells (CPC) have emerged as potential mediators of vascular repair. In experimental models, CPC mobilization is critically dependent on nitric oxide (NO). South Asian ethnicity is associated with reduced CPC. We assessed CPC mobilization in response to exercise in Asian men and examined the role of NO in CPC mobilization per se.
Methods and Results— In 15 healthy, white European men and 15 matched South Asian men, CPC mobilization was assessed during moderate-intensity exercise. Brachial artery flow-mediated vasodilatation was used to assess NO bioavailability. To determine the role of NO in CPC mobilization, identical exercise studies were performed during intravenous separate infusions of saline, the NO synthase inhibitor l-NMMA, and norepinephrine. Flow-mediated vasodilatation (5.8%±0.4% vs 7.9%±0.5%; P=0.002) and CPC mobilization (CD34+/KDR+ 53.2% vs 85.4%; P=0.001; CD133+/CD34+/KDR+ 48.4% vs 73.9%; P=0.05; and CD34+/CD45− 49.3% vs 78.4; P=0.006) was blunted in the South Asian group. CPC mobilization correlated with flow-mediated vasodilatation and l-NMMA significantly reduced exercise-induced CPC mobilization (CD34+/KDR+ −3.3% vs 68.4%; CD133+/CD34+/KDR+ 0.7% vs 71.4%; and CD34+/CD45− −30.5% vs 77.8%; all P<0.001).
Conclusion— In humans, NO is critical for CPC mobilization in response to exercise. Reduced NO bioavailability may contribute to imbalance between vascular damage and repair mechanisms in South Asian men.British Heart Foundatio
The Influence of Physiological Status on age Prediction of Anopheles Arabiensis Using Near Infra-red spectroscopy
Determining the age of malaria vectors is essential for evaluating the impact of interventions that reduce the survival of wild mosquito populations and for estimating changes in vectorial capacity. Near infra-red spectroscopy (NIRS) is a simple and non-destructive method that has been used to determine the age and species of Anopheles gambiae s.l. by analyzing differences in absorption spectra. The spectra are affected by biochemical changes that occur during the life of a mosquito and could be influenced by senescence and also the life history of the mosquito, i.e., mating, blood feeding and egg-laying events. To better understand these changes, we evaluated the influence of mosquito physiological status on NIR energy absorption spectra. Mosquitoes were kept in individual cups to permit record keeping of each individual insect’s life history. Mosquitoes of the same chronological age, but at different physiological stages, were scanned and compared using cross-validations. We observed a slight trend within some physiological stages that suggest older insects tend to be predicted as being physiologically more mature. It was advantageous to include mosquitoes of different chronological ages and physiological stages in calibrations, as it increases the robustness of the model resulting in better age predictions. Progression through different physiological statuses of An. arabiensis influences the chronological age prediction by the NIRS. Entomologists that wish to use NIR technology to predict the age of field-caught An. gambiae s.l from their study area should use a calibration developed from their field strain using mosquitoes of diverse chronological ages and physiological stages to increase the robustness and accuracy of the predictions.\u
Probabilistic Clustering of Time-Evolving Distance Data
We present a novel probabilistic clustering model for objects that are
represented via pairwise distances and observed at different time points. The
proposed method utilizes the information given by adjacent time points to find
the underlying cluster structure and obtain a smooth cluster evolution. This
approach allows the number of objects and clusters to differ at every time
point, and no identification on the identities of the objects is needed.
Further, the model does not require the number of clusters being specified in
advance -- they are instead determined automatically using a Dirichlet process
prior. We validate our model on synthetic data showing that the proposed method
is more accurate than state-of-the-art clustering methods. Finally, we use our
dynamic clustering model to analyze and illustrate the evolution of brain
cancer patients over time
Quantifying individual variability in exposure risk to mosquito bites in the Cascades region, Burkina Faso
Background The Cascades region, Burkina Faso, has a high malaria burden despite reported high insecticide-treated mosquito net (ITN) use. Human and vector activities outside the hours when indoor interventions offer direct protection from infectious bites potentially increase exposure risk to bites from malaria-transmitting Anopheles mosquitoes. This work investigated the degree of variation in human behaviour both between individuals and through time (season) to quantify how it impacts exposure to malaria vectors. Methods Patterns in human overnight activity (18:00–06:00) to quantify time spent using an ITN across 7 successive nights in two rural communities, Niakore (N = 24 participants) and Toma (71 participants), were observed in the dry and rainy seasons, between 2017 and 2018. Hourly human landing Anopheles mosquito catches were conducted in Niakore specifically, and Cascades region generally, between 2016 and 2017. Data were statistically combined to estimate seasonal variation in time spent outdoors and Anopheles bites received per person per night (bpppn). Results Substantial variability in exposure to outdoor Anopheles bites was detected within and between communities across seasons. In October, when Anopheles densities are highest, an individual’s risk of Anopheles bites ranged from 2.2 to 52.2 bites per person per night (bpppn) within the same week with variable risk dependent on hours spent indoors. Comparably higher outdoor human activity was observed in April and July but, due to lower Anopheles densities estimated, bpppn were 0.2–4.7 and 0.5–32.0, respectively. Males and people aged over 21 years were predicted to receive more bites in both sentinel villages. Conclusion This work presents one of the first clear descriptions of the degree of heterogeneity in time spent outdoors between people and across the year. Appreciation of sociodemographic, cultural and entomological activities will help refine approaches to vector control
Appropriate waist circumference cut points for identifying insulin resistance in black youth: a cross sectional analysis of the 1986 Jamaica birth cohort
Background While the International Diabetes Federation (IDF) has ethnic specific waist circumference (WC) cut-points for the metabolic syndrome for Asian populations it is not known whether the cut-points for black populations should differ from those for European populations. We examined the validity of IDF WC cut points for identifying insulin resistance (IR), the underlying cause of the metabolic syndrome, in predominantly black, young Jamaican adults. Methods Participants from a 1986 birth cohort were evaluated between 2005 and 2007 when they were 18-20 years old. Trained observers took anthropometric measurements and collected a fasting blood sample. IR was assessed using the homeostasis model assessment computer programme (HOMA-IR). Sex specific quartiles for IR were generated using HOMA-IR values and participants in the highest quartile were classified as "insulin resistant". Receiver operator characteristic (ROC) curves were used to estimate the best WC to identify insulin resistance. The sensitivity and specificity of these values were compared with the IDF recommended WC cut-points. Results Data from 707 participants (315 males; 392females) were analysed. In both sexes those with IR were more obese, had higher mean systolic blood pressure, glucose and triglycerides and lower mean HDL cholesterol. The WC was a good predictor of IR with an ROC area under the curve (95% CI) of 0.71(0.64,0.79) for men and 0.72(0.65,0.79) for women. Using the Youden Index (J) the best WC cut point for identifying IR in male participants was 82 cm (sensitivity 45%, specificity 93%, J 0.38) while the standard cut point of 94 cm had a sensitivity of 14% and specificity of 98% (J 0.12). In the female participants 82 cm was also a good cut point for identifying IR (sensitivity 52%, specificity 87%, J 0.39) and was similar to the standard IDF 80 cm cut point (sensitivity 53%, specificity 82%, J 0.35). Conclusions The WC that identified IR in young black men is lower than the IDF recommended WC cut point. Sex differences in WC cut points for identifying IR were less marked in this population than in other ethnic groups
Quantifying the relationship and contribution of mitochondrial respiration to systemic exercise limitation in heart failure
Aims:
Heart failure with reduced ejection fraction (HFrEF) induces skeletal muscle mitochondrial abnormalities that contribute to exercise limitation; however, specific mitochondrial therapeutic targets remain poorly established. This study quantified the relationship and contribution of distinct mitochondrial respiratory states to prognostic whole‐body measures of exercise limitation in HFrEF.
Methods and results:
Male patients with HFrEF (n = 22) were prospectively enrolled and underwent ramp‐incremental cycle ergometry cardiopulmonary exercise testing to determine exercise variables including peak pulmonary oxygen uptake (V̇O2peak), lactate threshold (V̇O2LT), the ventilatory equivalent for carbon dioxide (V̇E/V̇CO2LT), peak circulatory power (CircPpeak), and peak oxygen pulse. Pectoralis major was biopsied for assessment of in situ mitochondrial respiration. All mitochondrial states including complexes I, II, and IV and electron transport system (ETS) capacity correlated with V̇O2peak (r = 0.40–0.64; P < 0.05), V̇O2LT (r = 0.52–0.72; P < 0.05), and CircPpeak (r = 0.42–0.60; P < 0.05). Multiple regression analysis revealed that combining age, haemoglobin, and left ventricular ejection fraction with ETS capacity could explain 52% of the variability in V̇O2peak and 80% of the variability in V̇O2LT, respectively, with ETS capacity (P = 0.04) and complex I (P = 0.01) the only significant contributors in the model.
Conclusions:
Mitochondrial respiratory states from skeletal muscle biopsies of patients with HFrEF were independently correlated to established non‐invasive prognostic cycle ergometry cardiopulmonary exercise testing indices including V̇O2peak, V̇O2LT, and CircPpeak. When combined with baseline patient characteristics, over 50% of the variability in V̇O2peak could be explained by the mitochondrial ETS capacity. These data provide optimized mitochondrial targets that may attenuate exercise limitations in HFrEF
The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation
Peer reviewedPublisher PD
- …