1,847 research outputs found
Untangling Operation Common Sense : Reopening and Review of Social Security Administration Disability Claims
Part I of the Note outlines how the SSA processes a disability claim and illustrates the ambiguity in the language of the reopening regulations that has caused the split in the courts. Part II examines the four interpretations of the reopening regulations created by courts. Part II begins with the Secretary\u27s interpretation and concludes that this interpretation is plainly inconsistent with the language of the regulations. Thus, courts need not defer, as they normally would, to an agency\u27s interpretation of its own regulation. This Part next examines the alternative interpretations of these regulations advanced by various courts, and describes how each interpretation fails to reconcile the language of these regulations. Barring the possibility of interpreting the regulations in a way that completely reconciles the language, the various goals of the SSA should be considered in choosing the best interpretation. Part III demonstrates that allowing sua sponte reopening in limited circumstances - under the portion of the regulations that allows reopening forever for, inter alia, fraud and similar fault - best effectuates the goals of the SSA. Absent fraud or similar fault, however, the Appeals Council should not initiate reopening, and should use other procedures to fulfill the policy goals of the SSA
Microfluidic Device Architecture for Electrochemical Patterning and Detection of Multiple DNA Sequences
Electrochemical biosensors pose an attractive solution for point-of-care diagnostics because they require minimal instrumentation and they are scalable and readily integrated with microelectronics. The integration of electrochemical biosensors with microscale devices has, however, proven to be challenging due to significant incompatibilities among biomolecular stability, operation conditions of electrochemical sensors, and microfabrication techniques. Toward a solution to this problem, we have demonstrated here an electrochemical array architecture that supports the following processes in situ, within a self-enclosed microfluidic device: (a) electrode cleaning and preparation, (b) electrochemical addressing, patterning, and immobilization of sensing biomolecules at selected sensor pixels, (c) sequence-specific electrochemical detection from multiple pixels, and (d) regeneration of the sensing pixels. The architecture we have developed is general, and it should be applicable to a wide range of biosensing schemes that utilize gold–thiol self-assembled monolayer chemistry. As a proof-of-principle, we demonstrate the detection and differentiation of polymerase chain reaction (PCR) amplicons diagnostic of human (H1N1) and avian (H5N1) influenza
Controlled Positioning of Analytes and Cells on a Plasmonic Platform for Glycan Sensing Using Surface Enhanced Raman Spectroscopy
The rise of molecular plasmonics and its application to ultrasensitive spectroscopic measurements has been enabled by the rational design and fabrication of a variety of metallic nanostructures. Advanced nano and microfabrication methods are key to the development of such structures, allowing one to tailor optical fields at the sub-wavelength scale, thereby optimizing excitation conditions for ultrasensitive detection. In this work, the control of both analyte and cell positioning on a plasmonic platform is enabled using nanofabrication methods involving patterning of fluorocarbon (FC) polymer (
Microfluidic Device Architecture for Electrochemical Patterning and Detection of Multiple DNA Sequences
Electrochemical biosensors pose an attractive solution for point-of-care diagnostics because they require minimal instrumentation and they are scalable and readily integrated with microelectronics. The integration of electrochemical biosensors with microscale devices has, however, proven to be challenging due to significant incompatibilities among biomolecular stability, operation conditions of electrochemical sensors, and microfabrication techniques. Toward a solution to this problem, we have demonstrated here an electrochemical array architecture that supports the following processes in situ, within a self-enclosed microfluidic device: (a) electrode cleaning and preparation, (b) electrochemical addressing, patterning, and immobilization of sensing biomolecules at selected sensor pixels, (c) sequence-specific electrochemical detection from multiple pixels, and (d) regeneration of the sensing pixels. The architecture we have developed is general, and it should be applicable to a wide range of biosensing schemes that utilize gold–thiol self-assembled monolayer chemistry. As a proof-of-principle, we demonstrate the detection and differentiation of polymerase chain reaction (PCR) amplicons diagnostic of human (H1N1) and avian (H5N1) influenza
A Candidate Brightest Proto-Cluster Galaxy at z = 3.03
We report the discovery of a very bright (m_R = 22.2) Lyman break galaxy at z
= 3.03 that appears to be a massive system in a late stage of merging. Deep
imaging reveals multiple peaks in the brightness profile with angular
separations of ~0.''8 (~25 h^-1 kpc comoving). In addition, high
signal-to-noise ratio rest-frame UV spectroscopy shows evidence for ~5
components based on stellar photospheric and ISM absorption lines with a
velocity dispersion of sigma ~460 km s^-1 for the three strongest components.
Both the dynamics and high luminosity, as well as our analysis of a LCDM
numerical simulation, suggest a very massive system with halo mass M ~ 10^13
M_solar. The simulation finds that all halos at z = 3 of this mass contain
sub-halos in agreement with the properties of these observed components and
that such systems typically evolve into M ~ 10^14 M_solar halos in groups and
clusters by z = 0. This discovery provides a rare opportunity to study the
properties and individual components of z ~ 3 systems that are likely to be the
progenitors to brightest cluster galaxies.Comment: 14 pages, 3 figures, submitted to ApJ Letter
Prevalence of prehypertension and its relationship to risk factors for cardiovascular disease in Jamaica: Analysis from a cross-sectional survey
<p>Abstract</p> <p>Background</p> <p>Recent studies have documented an increased risk of cardiovascular disease (CVD) in persons with systolic blood pressures of 120–139 mmHg and/or diastolic blood pressures of 80–89 mmHg, classified as prehypertension in the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. In this paper we estimate the prevalence of prehypertension in Jamaica and evaluate the relationship between prehypertension and other risk factors for CVD.</p> <p>Methods</p> <p>The study used data from participants in the Jamaica Lifestyle Survey conducted from 2000–2001. A sample of 2012 persons, 15–74 years old, completed an interviewer administered questionnaire and had anthropometric and blood pressure measurements performed by trained observers using standardized procedures. Fasting glucose and total cholesterol were measured using a capillary blood sample. Analysis yielded crude, and sex-specific prevalence estimates for prehypertension and other CVD risk factors. Odds ratios for associations of prehypertension with CVD risk factors were obtained using logistic regression.</p> <p>Results</p> <p>The prevalence of prehypertension among Jamaicans was 30% (95% confidence interval [CI] 27%–33%). Prehypertension was more common in males, 35% (CI 31%–39%), than females, 25% (CI 22%–28%). Almost 46% of participants were overweight; 19.7% were obese; 14.6% had hypercholesterolemia; 7.2% had diabetes mellitus and 17.8% smoked cigarettes. With the exception of cigarette smoking and low physical activity, all the CVD risk factors had significantly higher prevalence in the prehypertensive and hypertensive groups (p for trend < 0.001) compared to the normotensive group. Odds of obesity, overweight, high cholesterol and increased waist circumference were significantly higher among younger prehypertensive participants (15–44 years-old) when compared to normotensive young participants, but not among those 45–74 years-old. Among men, being prehypertensive increased the odds of having >/=3 CVD risk factors versus no risk factors almost three-fold (odds ratio [OR] 2.8 [CI 1.1–7.2]) while among women the odds of >/=3 CVD risk factors was increased two-fold (OR 2.0 [CI 1.3–3.8])</p> <p>Conclusion</p> <p>Prehypertension occurs in 30% of Jamaicans and is associated with increased prevalence of other CVD risk factors. Health-care providers should recognize the increased CVD risk of prehypertension and should seek to identify and treat modifiable risk factors in these persons.</p
Structural Evolution of Early-type Galaxies to z=2.5 in CANDELS
Projected axis ratio measurements of 880 early-type galaxies at redshifts
1<z<2.5 selected from CANDELS are used to reconstruct and model their intrinsic
shapes. The sample is selected on the basis of multiple rest-frame colors to
reflect low star-formation activity. We demonstrate that these galaxies as an
ensemble are dust-poor and transparent and therefore likely have smooth light
profiles, similar to visually classified early-type galaxies. Similar to their
present-day counterparts, the z>1 early-type galaxies show a variety of
intrinsic shapes; even at a fixed mass, the projected axis ratio distributions
cannot be explained by the random projection of a set of galaxies with very
similar intrinsic shapes. However, a two-population model for the intrinsic
shapes, consisting of a triaxial, fairly round population, combined with a flat
(c/a~0.3) oblate population, adequately describes the projected axis ratio
distributions of both present-day and z>1 early-type galaxies. We find that the
proportion of oblate versus triaxial galaxies depends both on the galaxies'
stellar mass, and - at a given mass - on redshift. For present-day and z<1
early-type galaxies the oblate fraction strongly depends on galaxy mass. At z>1
this trend is much weaker over the mass range explored here
(10^10<M*/M_sun<10^11), because the oblate fraction among massive (M*~10^11
M_sun) was much higher in the past: 0.59+-0.10 at z>1, compared to 0.20+-0.02
at z~0.1. In contrast, the oblate fraction among low-mass early-type galaxies
(log(M*/M_sun)1 to
0.72+-0.06 at z=0. [Abridged]Comment: accepted for publication in ApJ; 14 pages; 10 figures; 4 table
Preliminary Study of Acute Changes in Emotion Processing in Trauma Survivors with PTSD Symptoms
Accumulating evidence suggests traumatic experience can rapidly alter brain activation associated with emotion processing. However, little is known about acute changes in emotion neurocircuits that underlie PTSD symptom development. To examine acute alterations in emotion circuit activation and structure that may be linked to PTSD symptoms, thirty-eight subjects performed a task of appraisal of emotional faces as their brains were functionally and structurally studied with MRI at both two weeks and three months after motor vehicle collision (MVC). As determined by symptoms reported in the PTSD Checklist at three months, sixteen survivors developed probable PTSD, whereas the remaining 22 did not meet criteria for PTSD diagnosis (non-PTSD). The probable PTSD group had greater activation than the non-PTSD group in dorsal and ventral medial prefrontal cortex (dmPFC and vmPFC) while appraising fearful faces within two weeks after MVC and in left insular cortex (IC) three months after MVC. dmPFC activation at two weeks significantly positively correlated with PTSD symptom severity at two weeks (R = 0.462, P = 0.006) and three months (R = 0.418, p = 0.012). Changes over time in dmPFC activation and in PTSD symptom severity were also significantly positively correlated in the probable PTSD group (R = 0.641, P = 0.018). A significant time by group interaction was found for volume changes in left superior frontal gyrus (SFG, F = 6.048, p = 0.019) that partially overlapped dmPFC active region. Between two weeks and three months, left SFG volume decreased in probable PTSD survivors. These findings identify alterations in frontal cortical activity and structure during the early post-trauma period that appear to be associated with development of PTSD symptoms
CANDELS/GOODS-S, CDFS, ECDFS: Photometric Redshifts For Normal and for X-Ray-Detected Galaxies
We present photometric redshifts and associated probability distributions for
all detected sources in the Extended Chandra Deep Field South (ECDFS). The work
makes use of the most up-to-date data from the Cosmic Assembly Near-IR Deep
Legacy Survey (CANDELS) and the Taiwan ECDFS Near-Infrared Survey (TENIS) in
addition to other data. We also revisit multi-wavelength counterparts for
published X-ray sources from the 4Ms-CDFS and 250ks-ECDFS surveys, finding
reliable counterparts for 1207 out of 1259 sources (). Data used for
photometric redshifts include intermediate-band photometry deblended using the
TFIT method, which is used for the first time in this work. Photometric
redshifts for X-ray source counterparts are based on a new library of
AGN/galaxy hybrid templates appropriate for the faint X-ray population in the
CDFS. Photometric redshift accuracy for normal galaxies is 0.010 and for X-ray
sources is 0.014, and outlier fractions are and respectively. The
results within the CANDELS coverage area are even better as demonstrated both
by spectroscopic comparison and by galaxy-pair statistics. Intermediate-band
photometry, even if shallow, is valuable when combined with deep broad-band
photometry. For best accuracy, templates must include emission lines.Comment: The paper has been accepted by ApJ. The materials we provide are
available under [Surveys] > [CDFS] through the portal
http://www.mpe.mpg.de/XraySurvey
- …