18 research outputs found

    Gas rich galaxies from the FIGGS survey

    Full text link
    The FIGGS (Faint Irregular Galaxy GMRT Survey) is aimed at creating a multi-wavelength observational data base for a volume limited sample of the faintest gas rich galaxies. In this paper we discuss two very gas rich galaxies that were observed as part of the FIGGS survey, viz. NGC 3741 and And IV. These galaxies are unusual in that they have extremely extended gas disks and very high ratios of dark to luminous matter. The very extended HI disks provide an unique opportunity to trace the extended distribution of dark matter around faint galaxies. We compare the baryon fraction of these galaxies with a sample of galaxies with well measured rotation curves and discuss whether extremely gas rich dwarf galaxies have abnormally small baryon fractions.Comment: 5 Pages, 4 Figures. To be published in the proceedings of "Galaxies in the Local Volume", ed. B. Koribalski, H. Jerje

    Sagittarius II, Draco II and Laevens 3: Three New Milky Way Satellites Discovered in the Pan-STARRS 1 3 Survey

    Get PDF
    We present the discovery of three new Milky Way satellites from our search for compact stellar overdensities in the photometric catalog of the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS 1, or PS1) 3π survey. The first satellite, Laevens 3, is located at a heliocentric distance of d = 67 ± 3 kpc. With a total magnitude of MV = −4.4 ± 0.3 and a half-light radius of rh = 7 ± 2 pc, its properties resemble those of outer halo globular clusters. The second system, Draco II/Laevens 4, is a closer and fainter satellite (d ~ 20 kpc, MV = −2.9 ± 0.8), whose uncertain size (rh=19−6+8  pc{r}_{h}={19}_{-6}^{+8}\;\mathrm{pc}) renders its classification difficult without kinematic information; it could either be a faint and extended globular cluster or a faint and compact dwarf galaxy. The third satellite, Sagittarius II/Laevens 5 (Sgr II), has an ambiguous nature, as it is either the most compact dwarf galaxy or the most extended globular cluster in its luminosity range (rh=37−8+9  pc{r}_{h}={37}_{-8}^{+9}\;\mathrm{pc} and MV = −5.2 ± 0.4). At a heliocentric distance of 67 ± 5 kpc, this satellite lies intriguingly close to the expected location of the trailing arm of the Sagittarius stellar stream behind the Sagittarius dwarf spheroidal galaxy (Sgr dSph). If confirmed through spectroscopic follow up, this connection would locate this part of the trailing arm of the Sagittarius stellar stream that has so far gone undetected. It would further suggest that Sgr II was brought into the Milky Way halo as a satellite of the Sgr dSph

    A Synoptic Map of Halo Substructures from the Pan-STARRS1 3Ï€ Survey

    Get PDF
    We present a panoramic map of the entire Milky Way halo north of δ∼−30∘δ∼−30∘ (∼30 000 deg2), constructed by applying the matched-filter technique to the Pan-STARRS1 3π Survey data set. Using single-epoch photometry reaching to g ∼22, we are sensitive to stellar substructures with heliocentric distances between 3.5 and ∼35 kpc. We recover almost all previously reported streams in this volume and demonstrate that several of these are significantly more extended than earlier data sets have indicated. In addition, we also report five new candidate stellar streams. One of these features appears significantly broader and more luminous than the others and is likely the remnant of a dwarf galaxy. The other four streams are consistent with a globular cluster origin, and three of these are rather short in projection (≲10∘≲10∘), suggesting that streams like Ophiuchus may not be that rare. Finally, a significant number of more marginal substructures are also revealed by our analysis; many of these features can also be discerned in matched-filter maps produced by other authors from SDSS data, and hence they are very likely to be genuine. However, the extant 3π data is currently too shallow to determine their properties or produce convincing colour–magnitude diagrams. The global view of the Milky Way provided by Pan-STARRS1 provides further evidence for the important role of both globular cluster disruption and dwarf galaxy accretion in building the Milky Way's stellar hal

    A New Faint Milky Way Satellite Discovered in the Pan-STARRS1 3Ï€ Survey

    Get PDF
    We present the discovery of a faint Milky Way satellite, Laevens 2/Triangulum II, found in the Panoramic Survey Telescope And Rapid Response System (Pan-STARRS 1) 3 pi imaging data and confirmed with follow-up wide-field photometry from the Large Binocular Cameras. The stellar system, with an absolute magnitude of M_V=-1.8 +/-0.5, a heliocentric distance of 30 +2/-2 kpc, and a half-mass radius of 34 +9/-8 pc, shows remarkable similarity to faint, nearby, small satellites such as Willman 1, Segue 1, Segue 2, and Bo\"otes II. The discovery of Laevens 2/Triangulum II further populates the region of parameter space for which the boundary between dwarf galaxies and globular clusters becomes tenuous. Follow-up spectroscopy will ultimately determine the nature of this new satellite, whose spatial location hints at a possible connection with the complex Triangulum-Andromeda stellar structures

    Toward an internally consistent astronomical distance scale

    Full text link
    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press (chapter 8 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    Tides in colliding galaxies

    Full text link
    Long tails and streams of stars are the most noticeable upshots of galaxy collisions. Their origin as gravitational, tidal, disturbances has however been recognized only less than fifty years ago and more than ten years after their first observations. This Review describes how the idea of galactic tides emerged, in particular thanks to the advances in numerical simulations, from the first ones that included tens of particles to the most sophisticated ones with tens of millions of them and state-of-the-art hydrodynamical prescriptions. Theoretical aspects pertaining to the formation of tidal tails are then presented. The third part of the review turns to observations and underlines the need for collecting deep multi-wavelength data to tackle the variety of physical processes exhibited by collisional debris. Tidal tails are not just stellar structures, but turn out to contain all the components usually found in galactic disks, in particular atomic / molecular gas and dust. They host star-forming complexes and are able to form star-clusters or even second-generation dwarf galaxies. The final part of the review discusses what tidal tails can tell us (or not) about the structure and content of present-day galaxies, including their dark components, and explains how tidal tails may be used to probe the past evolution of galaxies and their mass assembly history. On-going deep wide-field surveys disclose many new low-surface brightness structures in the nearby Universe, offering great opportunities for attempting galactic archeology with tidal tails.Comment: 46 pages, 13 figures, Review to be published in "Tidal effects in Astronomy and Astrophysics", Lecture Notes in Physics. Comments are most welcom

    Newly Discovered Globular Clusters in the Outer Halo of M31

    Get PDF
    Original paper can be found at: http://www.astrosociety.org/pubs/cs/309.html--Copyright Astronomical Society of the PacificWe present nine newly discovered globular clusters in the outer halo of M31, found by a semi-automated procedure from an INT Wide Field Camera survey of the region. The sample includes a candidate at the largest known projected galactocentric radius yet from M31

    STELLAR POPULATIONS IN THE OUTER REGIONS OF M31

    No full text
    corecore