160 research outputs found

    DNA and the chromosome – varied targets for chemotherapy

    Get PDF
    The nucleus of the cell serves to maintain, regulate, and replicate the critical genetic information encoded by the genome. Genomic DNA is highly associated with proteins that enable simple nuclear structures such as nucleosomes to form higher-order organisation such as chromatin fibres. The temporal association of regulatory proteins with DNA creates a dynamic environment capable of quickly responding to cellular requirements and distress. The response is often mediated through alterations in the chromatin structure, resulting in changed accessibility of specific DNA sequences that are then recognized by specific proteins. Anti-cancer drugs that target cellular DNA have been used clinically for over four decades, but it is only recently that nuclease specific drugs have been developed to not only target the DNA but also other components of the nuclear structure and its regulation. In this review, we discuss some of the new drugs aimed at primary DNA sequences, DNA secondary structures, and associated proteins, keeping in mind that these agents are not only important from a clinical perspective but also as tools for understanding the nuclear environment in normal and cancer cells

    Personalised nutrition and health

    Get PDF
    This article is one of a series commissioned by The BMJ. Open access fees for the series were funded by SwissRe, which had no input into the commissioning or peer review of the articles.S

    Association Analysis of ULK1 with Crohn's Disease in a New Zealand Population

    Get PDF
    The gene ULK1 is an excellent candidate for Crohn's disease (CD) due to its role in autophagy. A recent study provided evidence for the involvement of ULK1 in the pathogenesis of CD (Henckaerts et al., 2011). We attempted to validate this association, using a candidate gene SNP study of ULK1 in CD. We identified tagging SNPs and genotyped these SNPs using the Sequenom platform in a Caucasian New Zealand dataset consisting of 406 CD patients and 638 controls. In this sample, we were able to demonstrate an association between CD and several different ULK1 SNPs and haplotypes. Phenotypic analysis showed an association with age of diagnosis 17–40 years and inflammatory behaviour. The findings of this study provide evidence to suggest that genetic variation in ULK1 may play a role in interindividual differences in CD susceptibility and clinical outcome

    DNase1: No Association with Crohn's Disease in a New Zealand Population

    Get PDF
    DNase1 has been implicated in a number of immune disorders and is an excellent candidate gene for Crohn's disease (CD). We investigated whether DNase1 SNPs rs1053874 and rs8176938 were associated with CD in a well-characterized New Zealand dataset consisting of 447 cases and 716 controls. Furthermore, we measured serum DNase1 activity levels in a number of CD patients and controls. We did not find any evidence of association for either DNase1 genetic variation or DNase1 activity levels with CD. The lack of association indicates that DNase1 does not play a significant role in predisposing to CD in the New Zealand population

    One Year Sustainability of Risk Factor Change from a 9-Week Workplace Intervention

    Get PDF
    We examined the effect of a 9-week diet and physical activity intervention provided in the workplace by a group education session where personal dietary and physical activity goals were proposed. Measurements of anthropometry, fasting blood lipids, glucose and insulin, assays for antioxidant activity (AOA) and questionnaires were completed at 0, 3, 6, 9, and 12 weeks in 50 healthy workers (50% male, mean age 46y). Followup measurements in 39 (56% male) were possible at 52 weeks. At week 3 a group dietary and physical activity “motivational seminar” was held. At week 6, half the group were supplied daily kiwifruit for 3 weeks with cross over at week 9 until week 12. Compared to baseline, lipid, glucose, insulin and AOA measurements were improved at 12 and 52 weeks. Body measurements did not change. Group diet and physical activity advice reinforced over 9 weeks is associated with a sustained improvement in cardiovascular risk factors at 52 weeks

    From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals

    Get PDF
    Medicinal mushrooms have been used for centuries as nutraceuticals to improve health and to treat numerous chronic and infectious diseases. One such mushroom is Ganoderma lucidum, commonly known as Lingzhi, a species revered as a medicinal mushroom for treating assorted diseases and prolonging life. The fungus is found in diverse locations, and this may have contributed to confusion regarding the correct taxonomic classification of the genus Ganoderma. G. lucidum was first used to name a specimen found in England and thereafter was naively applied to a different Ganoderma species found in Asia, commonly known as Chinese Lingzhi. Despite the taxonomic confusion, which has largely been uncorrected, the popularity of Lingzhi has escalated across the globe. The current taxonomic situation is now discussed accurately in this Special Issue on Ganoderma. Today it is a multi-billion dollar industry wherein Lingzhi is cultivated or collected from the wild and consumed as a tea, in alcoholic beverages, and as a nutraceutical to confer numerous health benefits. Consumption of nutraceuticals has grown in popularity, and it is becoming increasingly important that active ingredients be identified and that suppliers make substantiated health claims about their products. The objective of this article is to present a review of G. lucidum over the past 2000 years from prized ancient herbal remedy to its use in nutraceuticals and to the establishment of a 2.5 billion $ (US) industry.NZ Focus to BK, MPG and LRF is acknowledged. YX was funded by a Phyllis Paykel Memorial Scholarship, and KSB and LRF were supported by the Auckland Cancer Society Research Centre

    IL23R and IL12B SNPs and Haplotypes Strongly Associate with Crohn's Disease Risk in a New Zealand Population

    Get PDF
    DNA samples from 339 Crohn's disease (CD) and 407 randomly selected controls from the Auckland (New Zealand) IBD project, were genotyped for five common single nucleotide polymorphisms in IL-23R (rs11805303, rs7517847, rs1343151, rs11209026, and rs10889677) and two in IL-12B (rs1363670 and rs6887695). While the IL-12B variants did not show an overall association and other IL23R variants led to minor changes in the risk of CD, rs1343151 and/or rs7517847 variants in the IL-23R gene strongly reduced the risk of developing CD at both allelic and genotype levels. A significantly decreased risk of first diagnosis of childhood CD was observed in individuals carrying the A allele of rs1343151, or between 17–40 y in individuals carrying the G allele in rs7517847 of IL-23R. A significantly decreased risk of ileocolonic or structuring disease was observed in individuals carrying the A allele in either rs11209026 or rs1343151, or the G allele in rs7517847 of IL-23R, and when such individuals did develop the disease, they were unlikely to require a bowel resection. Certain haplotypes very strongly modified risk. There was evidence for interactions of IL-23R variants with the NOD2 wild-type (d/d) genotype. Down-regulating the function of the IL-23R gene may decrease CD risk in the normal population

    Quality of life effects of androgen deprivation therapy in a prostate cancer cohort in New Zealand: Can we minimize effects using a stratification based on the aldo-keto reductase family 1, member C3 rs12529 gene polymorphism?

    Get PDF
    Background: Androgen deprivation therapy (ADT) is an effective palliation treatment in men with advanced prostate cancer (PC). However, ADT has well documented side effects that could alter the patient’s health-related quality of life (HRQoL). The current study aims to test whether a genetic stratification could provide better knowledge for optimising ADT options to minimize HRQoL effects. Methods: A cohort of 206 PC survivors (75 treated with and 131 without ADT) was recruited with written consent to collect patient characteristics, clinical data and HRQoL data related to PC management. The primary outcomes were the percentage scores under each HRQoL subscale assessed using the European Organisation for Research and Treatment of Cancer Quality of Life questionnaires (QLQ-C30 and PR25) and the Depression Anxiety Stress Scales developed by the University of Melbourne, Australia. Genotyping of these men was carried out for the aldo-keto reductase family 1, member C3 (AKR1C3) rs12529 single nucleotide polymorphism (SNP). Analysis of HRQoL scores were carried out against ADT duration and in association with the AKR1C3 rs12529 SNP using the generalised linear model. P-values <0 · 05 were considered significant, and were further tested for restriction with Bonferroni correction. Results: Increase in hormone treatment-related effects were recorded with long-term ADT compared to no ADT. The C and G allele frequencies of the AKR1C3rs12529 SNP were 53·4 % and 46·6 % respectively. Hormone treatmentrelated symptoms showed an increase with ADT when associated with the AKR1C3 rs12529 G allele. Meanwhile, decreasing trends on cancer-specific symptoms and increased sexual interest were recorded with no ADT when associated with the AKR1C3 rs12529 G allele and reverse trends with the C allele. As higher incidence of cancerspecific symptoms relate to cancer retention it is possible that associated with the C allele there could be higher incidence of unresolved cancers under no ADT options

    Effect of Sulforaphane on NOD2 via NF-κB: implications for Crohn’s disease

    Get PDF
    BACKGROUND: Sulforaphane has well established anti-cancer properties and more recently anti-inflammatory properties have also been determined. Sulforaphane has been shown to inhibit PRR-mediated pro-inflammatory signalling by either directly targeting the receptor or their downstream signalling molecules such as the transcription factor, NF-κB. These results raise the possibility that PRR-mediated inflammation could be suppressed by specific dietary bioactives. We examined whether sulforaphane could suppress NF-κB via the NOD2 pathway. METHODS: Human embryonic kidney 293T (HEK293T) cells were stably transfected with NOD2 variants and the NF-κB reporter, pNifty2-SEAP. The cells were co-treated with sulforaphane and MDP and secreted alkaline phosphatase (SEAP) production was determined. RESULTS: We found that sulforaphane was able to significantly suppress the ligand-induced NF-κB activity at physiologically relevant concentrations, achievable via the consumption of broccoli within the diet. CONCLUSIONS: These results demonstrate that the anti-inflammatory role of sulforaphane is not restricted to LPS-induced inflammatory signalling. These data add to the growing evidence that PRR activation can be inhibited by specific phytochemicals and thus suggests that diet could be a way of controlling inflammation. This is particularly important for a disease like Crohn’s disease where diet can play a key role in relieving or exacerbating symptoms

    Effect of ageing and single nucleotide polymorphisms associated with the risk of aggressive prostate cancer in a New Zealand population

    Get PDF
    Prostate cancer is one of the most significant male health concerns worldwide, and various researchers carrying out molecular diagnostics have indicated that genetic interactions with biological and behavioral factors play an important role in the overall risk and prognosis of this disease. Single nucleotide polymorphisms are increasingly becoming strong biomarker candidates to identify the susceptibility of individuals to prostate cancer. We carried out risk association of different stages of prostate cancer to a number of single nucleotide polymorphisms to identify the susceptible alleles in a New Zealand population and checked the interaction with environmental factors as well. We identified a number of single nucleotide polymorphisms to have associations specifically to the risk of prostate cancer and aggressiveness of the disease, and also certain single nucleotide polymorphisms to be vulnerable to the reported behavioral factors. We have addressed “special” environmental conditions prevalent in New Zealand, which can be used as a model for a bigger worldwide study
    corecore