11 research outputs found

    Systematic review of studies examining transtibial prosthetic socket pressures with changes in device alignment

    Get PDF
    Suitable lower-limb prosthetic sockets must provide an adequate distribution of the pressures created from standing and ambulation. A systematic search for articles reporting socket pressure changes in response to device alignment perturbation was carried out, identifying 11 studies. These were then evaluated using the American Academy of Orthotists and Prosthetists guidelines for a state-of-the-science review. Each study used a design where participants acted as their own controls. Results were available for 52 individuals and 5 forms of alignment perturbation. Four studies were rated as having moderate internal and external validity, the remainder were considered to have low validity. Significant limitations in study design, reporting quality and in representation of results and the suitability of calculations of statistical significance were evident across articles. Despite the high inhomogeneity of study designs, moderate evidence supports repeatable changes in pressure distribution for specific induced changes in component alignment. However, there also appears to be a significant individual component to alignment responses. Future studies should aim to include greater detail in the presentation of results to better support later meta-analyses

    A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site

    Get PDF
    This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be ≥3--5 m thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.Additional co-authors: Nick Teanby and Sharon Keda

    Technological neutrality and practice in higher education

    Get PDF
    For over twenty years [1–3, for example] thermography has been under development as a nondestructive evaluation (NDE) technique for composite materials. Several techniques are in use in laboratory, manufacturing quality control, and field inspection applications. The purpose of this paper is to present the capabilities of the externally applied thermal field (EATF) [4] (also called passive [5]) thermographic NDE method, to discuss the applications for which it seems best suited, to describe its limitations, and to highlight directions of further development

    Sport prostheses and prosthetic adaptations for the upper and lower limb amputees: an overview of peer reviewed literature

    No full text
    Background: Sport prostheses are used by both upper- and lower-limb amputees while participating in sports and other physical activities. Although the number of these devices has increased over the past decade, no overview of the peer reviewed literature describing them has been published previously. Such an overview will allow specialists to choose appropriate prostheses based on available scientific evidence rather than on personal experience or preference. Objective: To provide an overview of the sport prostheses as they are described by the papers published in peer reviewed literature. Study Design: Literature review. Methods: Four electronic databases were searched using free text and Medical Subject Headings (MESH) terms. Papers were included if they concerned a prosthesis or a prosthetic adaptation used in sports. Papers were excluded if they did not originate from peer reviewed sources, if they concerned prostheses for body parts other than the upper or lower limbs, if they concerned amputations distal to the wrist or ankle, or if they were written in a language other than English. Results: Twenty-four papers were included in this study. The vast majority contained descriptive data and consisted of expert opinions and technical notes. Conclusion: Data concerning the energy efficiency, technical characteristics and special mechanical properties of prostheses or prosthetic adaptations for sports, other than running, are scarce. Clinical relevance An overview of the peer reviewed literature will enable rehabilitation specialists working with amputees to choose a prosthesis that best suits their patients' expectations on the available scientific evidence. Identifying the information gaps present in the peer reviewed literature will stimulate new research and eventually broaden the base of scientific knowledge

    Selection of the InSight Landing Site

    No full text
    The selection of the Discovery Program InSight landing site took over four years from initial identification of possible areas that met engineering constraints, to downselection via targeted data from orbiters (especially Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE) images), to selection and certification via sophisticated entry, descent and landing (EDL) simulations. Constraints on elevation (≤−2.5 km for sufficient atmosphere to slow the lander), latitude (initially 15°S–5°N and later 3°N–5°N for solar power and thermal management of the spacecraft), ellipse size (130 km by 27 km from ballistic entry and descent), and a load bearing surface without thick deposits of dust, severely limited acceptable areas to western Elysium Planitia. Within this area, 16 prospective ellipses were identified, which lie ∼600 km north of the Mars Science Laboratory (MSL) rover. Mapping of terrains in rapidly acquired CTX images identified especially benign smooth terrain and led to the downselection to four northern ellipses. Acquisition of nearly continuous HiRISE, additional Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) images, along with radar data confirmed that ellipse E9 met all landing site constraints: with slopes \u3c15° at 84 m and 2 m length scales for radar tracking and touchdown stability, low rock abundance (\u3c10 %) to avoid impact and spacecraft tip over, instrument deployment constraints, which included identical slope and rock abundance constraints, a radar reflective and load bearing surface, and a fragmented regolith ∼5 m thick for full penetration of the heat flow probe. Unlike other Mars landers, science objectives did not directly influence landing site selection

    A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site

    No full text

    Molecular Probes for Thermometry in Microfluidic Devices

    No full text
    corecore