943 research outputs found
Identifying the lights position in photometric stereo under unknown lighting
Reconstructing the 3D shape of an object from a set of images is a classical
problem in Computer Vision. Photometric stereo is one of the possible
approaches. It stands on the assumption that the object is observed from a
fixed point of view under different lighting conditions. The traditional
approach requires that the position of the light sources is accurately known.
It has been proved that the lights position can be estimated directly from the
data, when at least 6 images of the observed object are available. In this
paper, we give a Matlab implementation of the algorithm for solving the
photometric stereo problem under unknown lighting, and propose a simple
shooting technique to solve the bas-relief ambiguity.Comment: new versio
SoftNet: A Package for the Analysis of Complex Networks
Identifying the most important nodes according to specific centrality indices is an important issue in network analysis. Node metrics based on the computation of functions of the adjacency matrix of a network were defined by Estrada and his collaborators in various papers. This paper describes a MATLAB toolbox for computing such centrality indices using efficient numerical algorithms based on the connection between the Lanczos method and Gauss-type quadrature rules
The seriation problem in the presence of a double Fiedler value
Seriation is a problem consisting of seeking the best enumeration order of a set of units whose interrelationship is described by a bipartite graph. An algorithm for spectral seriation based on the use of the Fiedler vector of the Laplacian matrix associated to the problem was developed by Atkins et al. under the assumption that the Fiedler value is simple. In this paper, we analyze the case in which the Fiedler value of the Laplacian is not simple, discuss its effect on the set of the admissible solutions, and study possible approaches to actually perform the computation. Examples and numerical experiments illustrate the effectiveness of the proposed methods
Shell-supported footbridges
Architects and engineers have been always attracted by concrete shell structures due to their high efficiency and plastic shapes. In this paper the possibility to use concrete shells to support footbridges is explored. Starting from Musmeci's fundamental research andwork in shell bridge design, the use of numerical formfinding methods is analysed. The form-finding of a shellsupported footbridge shaped following Musmeci's work is first introduced. Coupling Musmeci's and Nervi's experiences, an easy construction method using a stay-inplace ferrocement formwork is proposed. Moreover, the advantage of inserting holes in the shell through topology optimization to remove less exploited concrete has been considered. Curved shell-supported footbridges have been also studied, and the possibility of supporting the deck with the shell top edge, that is along a single curve only, has been investigated. The form-finding of curved shell-supported footbridges has been performed using a Particle-Spring System and Thrust Network Analysis. Finally, the form-finding of curved shell-supported footbridges subjected to both vertical and horizontal forces (i.e. earthquake action) has been implemented
Estimating the trace of matrix functions with application to complex networks
The approximation of trace(f(Ω)), where f is a function of a symmetric matrix Ω, can be challenging when Ω is exceedingly large. In such a case even the partial Lanczos decomposition of Ω is computationally demanding and the stochastic method investigated by Bai et al. (J. Comput. Appl. Math. 74:71–89, 1996) is preferred. Moreover, in the last years, a partial global Lanczos method has been shown to reduce CPU time with respect to partial Lanczos decomposition. In this paper we review these techniques, treating them under the unifying theory of measure theory and Gaussian integration. This allows generalizing the stochastic approach, proposing a block version that collects a set of random vectors in a rectangular matrix, in a similar fashion to the partial global Lanczos method. We show that the results of this technique converge quickly to the same approximation provided by Bai et al. (J. Comput. Appl. Math. 74:71–89, 1996), while the block approach can leverage the same computational advantages as the partial global Lanczos. Numerical results for the computation of the Von Neumann entropy of complex networks prove the robustness and efficiency of the proposed block stochastic method
A distal renal tubular acidosis showing hyperammonemia and hyperlactacidemia
Introduction: distal renal tubular acidosis (dRTA) presents itself with variable clinical manifestations and often with late expressions that impact on prognosis. Case report: A 45-day-old male infant was admitted with stopping growth, difficult feeding and vomiting after meals. Clinical tests and labs revealed a type 1 renal tubular acidosis, even if the first blood tests showed ammonium and lactate increase. We had to exclude metabolic diseases before having a certain diagnosis. Conclusions: blood and urine investigations and genetic tests are fundamental to formulate dRTA diagnosis and to plan follow-up, according to possible phenotypic expressions of recessive and dominant autosomal forms in patients with dRTA
Curved footbridges supported by a shell obtained through thrust network analysis
After Maillart's concrete curved arch bridges were built before the Second World War, in the second half of the past century and this century, many curved bridges have been built with both steel and concrete. Conversely, since the construction of Musmeci's shell supported bridge in Potenza, few shell bridges have been constructed. This paper explains how to design a curved footbridge supported by an anticlastic shell by shaping the shell via a thrust network analysis (TNA). By taking advantage of the peculiar properties of anticlastic membranes, the unconventional method of shaping a shell by a TNA is illustrated. The shell top edge that supports the deck has an assigned layout, which is provided by the road curved layout. The form of the bottom edge is obtained by the form-finding procedure as a thrust line, by applying the thrust network analysis (TNA) in a non-standard manner, shaping the shell by applying the boundary conditions and allowing relaxation. The influence of the boundary conditions on the bridge shape obtained as an envelope of thrust lines is investigated. A finite element analysis was performed. The results indicate that the obtained shell form is effective in transferring deck loads to foundations via compressive stresses and taking advantage of concrete mechanical properties
Importance of plants with extremely small populations (Psesps) in endemic-rich areas, elements often forgotten in conservation strategies
The distribution of the threatened fern Ophioglossum vulgatum L., a plant with extremely small populations (PSESPs) in Sardinia, is characterized by small disjunct populations with only a few individuals, and little is known about its status in the wild. To provide information for the conservation of O. vulgatum and with the aim to develop an in situ conservation strategy, we investigated its distribution, population size, and habitat. Field surveys confirmed that the species grows in only five localities. Two representative populations were selected for this study (Funtanamela and Gedili), and in each population, all plants were mapped and monitored monthly from April to August over an 8-year period. During the study, the populations had a very low number of reproductive plants and the populations appeared to be in decline, with the total number of plants per population slightly decreased in Gedili while a sharp reduction was recorded in Funtanamela due to wild boar threat. A fence was built in order to protect the site from further damage, but no noticeable signals of recovery were observed. The most urgent conservation requirement for this species is to preserve the threatened habitat of the remnant populations. Further field surveys and research are also required for an improved understanding of the species’ status
Impact of Horse Grazing on Floristic Diversity in Mediterranean Small Standing-Water Ecosystems (SWEs)
Small standing-Water Ecosystems (SWEs), despite their pivotal ecological role due to their participation in hydrogeological processes and their richness in biodiversity, seem to be often overlooked by the scientific community. In this study, the vascular plant diversity in some representative SWEs, that host a peculiar assemblage of plant and animal species, was investigated in relation to the disturbance effects of a wild horse population. A total of 50 plots, equally distributed in small and large SWEs, were surveyed and a level of disturbance was attributed to each plot. We found greater species richness in small and undisturbed SWEs, which suggests the negative impact of horse grazing on the richness of plant species in this type of habitat. Significant differences in plant assemblage were found according to the disturbance level, whereas, contrary to what was observed for species richness, no differences were detected based on their size. The diversity indices, used to evaluate the richness and diversity in these areas, recorded the highest values for small and undisturbed areas. This result highlights that the disturbance of the horse grazing plays a pivotal role in affecting the diversity and richness of species in the SWEs. These findings suggest that SWE systems should be analyzed considering these areas as unique in order to allow the conservation of the plant richness and biodiversity of the SWE systems in conjunction with the protection of horses
Wave energy converter mooring system: Available solvers and model validation
Talking about mooring systems for Wave Energy Converter shall be taken into account not only the station-keeping problem but also the influence of the mooring on the device motion. In literature several software for mooring modeling could be investigated, and among these software MoorDyn should be considered for its versatility. By the way, each model should be validated against experimental data to test its reliability hence, the aim of these paper is to follow the analysis which starts from an overview of the mooring system models and software and which ends with a model validation which has been performed against the experimental data obtained during Naples experimental campaign. Device kinematic has been recorded through a data acquisition system equipped in the scaled wave energy converter, and it has been used as input of the numerical simulation. The force recorded with a load cells system, connected with the mooring lines and the device, has been compared with the numerical one, derived from MoorDyn, and they have shown a marked overlapping that witnesses the validation
- …