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Abstract

The approximation of trace (f(f2)), where f is a function of a
symmetric matrix €2, can be challenging when € is exceedingly
large. In such a case even the partial Lanczos decomposition of
Q is computationally demanding and the stochastic method inves-
tigated by Bai, Fahey, and Golub [1] is preferred. Moreover, in
the last years, a partial global Lanczos method has been shown
to reduce CPU time with respect to partial Lanczos decomposition.
In this paper we review these techniques, treating them under the
unifying theory of measure theory and Gaussian integration. This
allows generalizing the stochastic approach, proposing a block ver-
sion that collects a set of random vectors in a rectangular matrix,
in a similar fashion to the partial global Lanczos method. We show
that the results of this technique converge quickly to the same
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approximation provided by [1], while the block approach can leverage
the same computational advantages as the partial global Lanczos.
Numerical results for the computation of the Von Neu-
mann entropy of complex networks prove the robustness
and efficiency of the proposed block stochastic —method.

Keywords: Gauss quadrature, Lanczos algorithm, Monte Carlo method,
trace computation, network analysis.

Dedicated to Claude Brezinski on his eightieth birthday

1 Introduction

We are concerned with the computation of the trace of a matrix function, that
is:

T (€ f) = trace (f(Q)), (1)
where 2 € R"*™ is a symmetric matrix and f(z) is a real function of sufficient
regularity, yet not trivially simple. We are interested in applications where the
large size of the matrix 2 prevents usage of full matrix operations and only
matrix-vector products are available. A paradigmatic example is obtained by
choosing f(z) = —zlog(x) and Q a positive semidefinite matrix, albeit large,
truncation of a quantum-mechanical operator. In this case 7(£2; f) becomes
the von Neumann entropy, a fundamental physical quantity. The same function
f(z) is also of relevance to information theory and dynamical systems [2].
A relatively newer and equally important application has recently arisen in
relation to graphs, where €2 is the normalized graph Laplacian operator. The
von Neumann entropy of graphs has been introduced in [3] and its importance
as a statistical indicator in random graphs has been exposed in [4, 5]. From a
numerical point of view, its computation is notably challenging, see e.g. [6] and
references therein, and for a broader perspective on matrix functions see [7-9)].

While a vast literature has dealt with the problem of approximating the
trace of a matrix function (too large to review here, but see the early works
of Claude Brezinski [10, 11]), in this paper we follow an approach originally
developed in the physics literature [12-14] and later exposed by Golub and
Meurant [15]. In this approach matrix elements of f({2) can be reduced to
Stieltjes integrals of f(z) with respect to suitable positive measures, as we
discuss below. Evaluation of these integrals (at times also providing upper and
lower bounds, when f(x) is a completely monotonic function) can be efficiently
performed by Gaussian quadrature, which in turn can be profitably derived by
the Jacobi matrix of the measure, computed via the Lanczos algorithm. The
trace of the matrix function f(€2) can finally be obtained by summation over
all diagonal matrix elements in the canonical basis, c¢f. Section 2.

It is an interesting generalization to extend the formalism beyond the eval-
uation of matrix elements. The quantity 7(€2; f) can be computed as the
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integral .
trace (£(9) = [ f(a) dvo (o) 2)

in which vq is a fundamental spectral measure associated with a compact
operator, the counting measure of the eigenvalues,

v = Z(S,\j, (3)
j=1

where \j, with j = 1,...,n, are the eigenvalues of Q and dy; is the atomic
measure of unit weight at position A;. This measure has crucial importance in
many physical properties, from classical and quantum partition functions in
statistical mechanics [12] to random matrix theory [16]. In this context, when
normalized to unity, it is frequently called the density of states (DOS). It plays
a prominent role also in mathematics, notably in constructive approximations:
consider a positive Borel measure supported on a compact subset K of the
real line, and let )\;n) be the zeros of the orthogonal polynomials of degree
n associated with such measure. Remarkable properties are enjoyed by this
measure if the normalized counting measure of the zeros has a weak limit,
which is the equilibrium measure of the support K in logarithmic potential
theory [17].

Numerical algorithms to deal with v are therefore of paramount impor-
tance. In [18] it was shown that it is possible to adapt the Lanczos algorithm
to construct a sequence of orthogonal matrix polynomials, whose associated
Jacobi matrix exactly corresponds to the measure v, and hence the trace
in (1) can be computed by direct integration of equation (2), without pass-
ing via matrix elements. The same procedure was later discussed in [19] (also
see the references therein), where it was termed the global Lanczos method,
a nomenclature that we follow in this work, as opposed to the scalar Lanc-
zos method for matrix elements. The global approach was also employed in a
related context in [20, 21]. Formal equivalence of the scalar and global tech-
nique will be apparent in our presentation: Claude Brezinski, to whom this
paper is dedicated, recognized this equivalence early on [22, 23].

When applied to estimate the trace of a large matrix, these techniques are
computationally intensive, even if they only require matrix-vector products, a
fact that limits their applicability in the case of huge problems. To overcome
this limitation a stochastic approach is then advisable, to provide an estimate
of the desired quantity 7(2; f). A technique to combine random sampling
with the Stieltjes approach for matrix elements has been originally developed
by Bai, Fahey, and Golub in [1]. The stochastic approach was extended to
estimate the Jacobi matrix of the DOS measure in [18]. A further extension
of [1] for the computation of the trace of a matrix function in the case of rank-
one vectors is proposed in [24]. Moreover, [25] also deals with the computation
in the case of indefinite matrices.

3
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In this paper, we apply and extend the stochastic approach in [1] to a
block version that collects 1 < k < m random vectors in an n x k matrix,
similar to what is done in the global Lanczos method in [19]. The new block
method reduces to what was proposed in [1] and in [18] in the case of k =1
and k = n, respectively. We proved that the mean of the bounds obtained by
applying our new block version converges to trace (f(2)). Moreover, we show
that the average of k approximations obtained by the scalar stochastic method
is different from what is obtained by the block stochastic algorithm applied
to the same random vectors. Nevertheless, the results obtained by the two
methods rapidly converge to each other already for small values of & and small
Jacobi matrices. From a theoretical point of view, the two methods compute
the same number of matrix-vector products, but the block version can take
advantage of the modern computer architectures as it occurs for global Lanczos
with respect to scalar Lanczos.

While the proposed block stochastic method can be applied to solve the
problem (2) for a generic function f, in the numerical experiments we focus
on the von Neumann entropy of graphs. Several tests on large real networks
reveal results of good accuracy with a relatively low CPU time of the proposed
block stochastic method.

This paper is organized as follows: In Section 2 we review the relations that
connect the trace of a matrix function to Stieltjes integrals with respect to
positive Borel measures and provide bounds by Gaussian and Gauss-Radau for-
mulae. The Lanczos technique is employed in Section 3 to compute the Jacobi
matrices of these measures. Our presentation aims to show the formal equiva-
lence of the so—called scalar and global Lanczos technique, the latter described
in Section 3.1. In Section 4 we review the Monte Carlo approach in [1], for which
we prove theoretically a useful convergence property. In Section 5, following
the same formal equivalence that links scalar and global Lanczos, the Monte
Carlo approach is generalized to random “vectors” in R™**, also proving its
convergence. The performance of this method is compared in Section 6 with
the other reviewed algorithms on the computation of the von Neumann entropy
of a sample of complex networks. Section 7 contains concluding remarks.

2 The trace of a matrix function as a quadratic
functional

In this section, mainly to fix the notation, we write the trace of a matrix
function as a quadratic functional, acting in spaces of vectors or matrices,
in a similar fashion. These functionals are then reduced to Stieltjes integrals
with respect to corresponding positive Borel measures. The standard theory is
applied in Section 2.1 to bound these integrals by Gaussian and Gauss-Radau
formulae.
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The trace in (1) can be evaluated as a sum of quadratic forms:

n

trace (f(Q)) = Z Qe f). (4)

i=1

In this equation, e; is the i-th vector in the canonical basis of R” and Q(u; f)
is

Q(u; f) =u f(Q)u = (u, f(Q)u), ()
where u € R™ and (-, -) indicates the scalar product in R™.

By gathering the terms in the summation (4) in g groups of k elements
(we suppose for simplicity of notation that n = gk, but the procedure can be
generalized when k does not divide n, by changing the cardinality of one or
more of such groups) one sees that

g

trace (£(2)) = > Q(Em; f), (6)

m=1

where E,,, are the matrices composed of k columns of the identity matrix:
E, = [e(m,l)kﬂ,...,emk] , m=1,...,9, (7)
and accordingly the quadratic form acts on “vectors” U in R"*¥ as
Q(U; f) = trace (UT f(Q)U). (8)

Note that we use the same symbol Q in (4) and (6) (8), the difference being
revealed by the argument of the quadratic form, in lower (equation (4)) or
upper case (equations (6) (8)). Clearly, the quadratic forms depend on 2. Not
to overburden the notation, this dependence will be left implicit — as well as
that of related measures. Similarly, we use the same symbol (-, -) for the scalar
product in R™, equation (5), and the scalar product in the space of n x k real
matrices, whose associated norm is the Frobenius norm:

(U, V) = trace (UTV). (9)

This usage cannot lead to confusion. In fact, it is easily seen that (5) is a special
case of (9) for k = 1, where U reduces to u and V = f(Q2)u. Moreover, letting
k = n implies that E; is the identity matrix, so that Q(I; f) = trace (f(f2))
and (2) can also be fitted into this framework. Throughout the paper, we shall
move to and fro the two limiting cases.

Let us therefore focus on the quadratic functional (8), starting from the
case k = 1.

5
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2.1 Gaussian Quadrature

Gauss-type quadrature rules [12-15, 26] can be employed to estimate the k = 1
case in the previous subsection, that is, the quadratic form (5). An overview
is presented in [15]. This technique also provides upper and lower bounds to
Q(u; f). Although it is now quite standard, we briefly review it, since is at
the core of successive developments.

The quadratic form in (5) takes a significant form when one employs the
spectral factorization

Q= QAQ", (10)
in which the columns of the orthogonal matrix @ = [q1,92,...,d,] € R"*"
are the orthonormalized eigenvectors of §: Q0q; = A;q;, with j =1,...,n, and
A is the diagonal matrix A = diag[A1, A2, ..., A\,] € R™ ™. Eigenvalues and
eigenvectors are conveniently ordered according to Ay < Ay < --- < \,. In so

doing, one obtains
Qu; f)=u"Qf(M)QTu =" (u,q;)*f(N)), (11)

j=1

which can be understood as a Stieltjes integral:

-/ "Ha) dyra(a). (12)

In the above, py is a piece-wise constant distribution function with jumps of
size (u, qj)2 at the eigenvalues A; of 2. Equivalently, u, is a positive discrete
measure composed of n atoms:

n

pa = Y (1, q;)%5), (13)

j=1

We can take u as a unit norm vector so that pu, is a probability measure.
Therefore, the integral (12) can be approximated by the ¢-point Gaussian
quadrature rule

G (peu, f Z wi? f(2(9). (14)

Equation (14) is itself an integral of f Wlth respect to a discrete measure. As
it is well known, this measure can be derived from J*) (j,), the truncation of
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rank ¢ of the Jacobi matrix of p,, which can be formally written as

_[10 b1
by a1 by
J(@)(Mu): b2 GRKXE.
be_1
be—1 ag—1]

In fact, the nodes zy) are the eigenvalues of J¢(1y) and the weights wy) are
the squares of the first components of the associated normalized eigenvectors
[27], quantities that can be profitably computed by the Golub-Welsch method
[28].

Note that quantity (14) can also be computed starting from the Jacobi
matrix J© (uy), that is:

G (a, f) = €] F(TO (pa))er. (15)

3 The Lanczos method

The required Jacobi matrix can be obtained by ¢ steps of the Lanczos method
reproduced here in Algorithm 1, applied to the matrix €2 with initial vector u.

Suppose that the function f(z) is completely monotonic, i.e. when z
belongs to the convex hull of the spectrum of €2, the /-th derivative of f is such
that (—1)°f®(z) > 0 (at least, in a range of values of £). Then, analysis of the
remainder formula for Gaussian integration reveals that G (ttu, f) provides a
lower bound to the integral (12). It has been proved, in exact arithmetic, that
in this case increasing ¢ the bound gets tighter; see [15].

Under the same conditions, one also proves that the (¢4 1)-point Gauss-
Radau quadrature rule R(”l)(ﬂu, f) yields tightening upper bounds. This
quadrature is constructed with a fixed node at zp (29 can be any real value
to the left of the spectrum of €2). The rule can be computed in the same way
as in equation (15), from the truncated Jacobi matrix of the positive measure
diin(s) = (s — 2zp) duu(s), which can be easily obtained as follows:

J(€+1)(ﬂu) - [J(e)(l;u) b{ez] € REFIXEHT
bgee ay

In this equation Gy = z — b2me—1(20)/me(20), and 7 is the monic orthogo-
nal polynomial of degree £ of p,. Similarly to the computation of G (jiy, f)
in (14), the quantity R+ (jiy, f) can also be computed starting from the
Jacobi matrix J*1 (fi,), that is:

RUED (jig, f) = ef (T (j))er. (16)

7
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Combining the two bounds, when f is completely monotonic, the following
sequence of inequalities holds for any ¢:

GV (i ) < 619 (u f) < QU f) < RV (i, £) < RO (o, £ (17)

see e.g. [15, 27, 29] for details. In practice, it is sufficient that the j-th deriva-
tive of f is completely monotonic for a certain j, possibly small for the
computational purpose.

We assume that the Lanczos algorithm does not breakdown, that is, by_1
in the matrix J¢(uy,) is larger than zero. When by is null, the spectrum
of the Jacobi matrix is a subset of the spectrum of Q and G (uy, f) =
REED (i, ) = uTQf(A)QTu. If by turns out to be negative, this means
that numerical instabilities (typically, loss of normalization) have affected the
computation.

Algorithm 1 The Scalar Lanczos algorithm.

Require: Matrix Q2 € R™"*", vector u € R", Jacobi matrix size £, completely
monotonic function f.

Ensure: lower bound L) (u; f), upper bound U“+Y (u; f), and approxima-
tion Qu; f) =~ 3(LO(w; f) + U (u; f))

Lu=uu_1=0,6=1

2: for j=1,...,4do

3 ajo1 = (w1, Qujg)

4: r; = QUj_l — ;151 — bj_lllj_g
50 by =/(rjr)

6  u;=r;/b

7: end for

8:

Compute the Gauss rule L (u; f) := GO (uy, f) via the Golub-Welsch
algorithm [28] applied to J©) ().

9: Enlarge J (py) to yield JED (i)

10: Compute the Gauss-Radau rule UHD (u; f) := READ (1, f) via the
Golub-Welsch algorithm [28] applied to J“*+1 ().

Algorithm 2 The Global Lanczos algorithm.

Require: Matrix Q € R™*", vector U € R™*  Jacobi matrix size £,
completely monotonic function f
Ensure: lower bound L) (U; f), upper bound Ut (U; f), and approxi-
mation Q(U; f) ~ 3(LO(U; f)+UD(U; f))
1: Replace u by U, u_; = 0 € R™** and employ the scalar product (9) in
algorithm 1.
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3.1 The Global Lanczos method

The method of the previous section can be generalized to the case of the
quadratic form (8), replacing vectors u by matrices U in steps 1 to 8 (see
Algorithm 2). The generalization is particularly instructive when k = n and
U =1 is the identity matrix. In this case, the Lanczos Algorithm 2 yields the
sequence of matrix orthogonal polynomials p;(€) that satisfy the three-terms
relation

Qp; (Q2) = bj11pj+1(2) + a;p;(2) + bjp; -1 (), (18)
initialized by po(Q2) = I and p_;(Q2) = 0, 0 € R"*¥ being the null operator.
It is easy to show (see e.g [18], Sect. 10 Lemma 10.1) that the Jacobi matrix
so produced corresponds to the measure py that, in this case, is precise vq
defined in (3), the counting measure of the eigenvalues. In the mathematical
physics literature, this measure (when normalized to unity) is also known as
the density of states of the operator €2, to distinguish it from the local density
of states, typically represented by the equation (13).

Because of this formal equivalence, the considerations presented in the
previous subsection extend to this case: when f(z) is a completely mono-
tonic function, Gauss and Gauss-Radau quadratures provide upper and lower
bounds to the desired quantity (2).

The case 1 < k < n, discussed in [19], is intermediate between the two
extremes and can be described by the same theory. In fact, in this case, one
can identify the measure py as follows. Let U = [ug, ua,...,ux] € R™*¥ be a
matrix with normalized columns ug € R”, for s = 1 to k. Taking f(z) = z, we
observe that

n k
QU; f) = (U,QU) = > XY (us,q;)?, (19)
j=1 s=1
which shows that the measure py is
pu = ZMU,j Ox;s (20)
j=1

with the positive weights py ; implicitly defined by (19). Quite in the same
way as before, computing the Jacobi matrix J(uy) via the Lanczos algorithm
and proceeding with Golub and Welsch diagonalization and finally quadratures
yield upper and lower bounds to Q(U; f) for a completely monotonic f(x).
The synthetic scheme of this procedure is presented in Algorithm 2.

Finally, choosing in sequence U =E,,, m =1,...,g, as in (7), one obtains
upper and lower bounds to the desired quantity f(Q2), via equation (6).

4 Monte Carlo approach

Often, the size of the matrix 2 is exceedingly large so computer time limitations
hinder the computation of the full sums (4) or (6). A stochastic approach
is then advisable, to provide a probabilistic estimate of the desired quantity

9
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T(Q; f). A first approach employs the following result from [30, 31] that the
reader can easily prove by direct computation (also see below, in Section 5,
equation (24)).

Proposition 1 ([30, 31]) Let H be an n x n symmetric matriz. Let u € R™ be a
random vector whose entries are independent, equally distributed random variables
of zero mean and unit variance. Then, the random variable (u, Hu) is an unbiased
estimator of trace (H), while the variance of the estimator is 23, (e, Hej)Q.

To apply this proposition to the problem at hand, where H = f(2), the
matrix function must be evaluated first. To solve this problem, the authors
of [1] combined stochastic sampling with the Stieltjes technique. This produces
Algorithm 3 reproduced herein, where we use the symbol k£ to denote the
cardinality of the random sample. This choice is dictated by formal equivalence
with the material in Section 3.1, as it will be apparent in a moment.

Algorithm 3 The Monte Carlo approach introduced in [1].

Require: Matrix Q € R™*" sample vectors uys € R™, s = 1,...,k, Jacobi
matrix size ¢, completely monotonic function f
Ensure: stochastic approximation of trace (f(£2)) ~ 57 Z (LG (ug; f)+
U (ug; f))
1: fors=1,...,k do
2: compute lower bound L) (u,; f) and upper bound U*Y (uy; f) for
Q(us; f)= <us> f(Q)us> by Algorithm 1
3: accumulate the values L) (u,; f) and U¢HD (uy; f).
4: end for

In words, the algorithm evaluates upper and lower bounds for the & func-
tionals Q(us; f) and averages these values to get an estimate of trace (f(2)).
In fact, observe that the bounds L(us; f) and U(us; f) are random func-
tion themselves, via the random vectors u,. Consider the inequality (10) in
reference [1] (adapted to our notation)

1

k k
> (e f(@u) < 30 ) (2)

P?'M—‘

1 k
EZ Z) u57f S

and the related sentence from the same paper: It is natural to expect that with
suitable sample size, the mean of the computed bounds yields a good estima-
tion of the quantity trace (f(€2)). Yet, Proposition 1 only guarantees that the
expectation of the central term in the above inequalities is equal to the desired
quantity so that the expectation of the first and third term (the ones com-
puted by the algorithm) are respectively smaller and larger than trace (f(€2)).
Clearly, the expectation of the random variable %[L(Z)(us; f)+U D (ug; )]
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is between these bounds, but it cannot be assumed to be equal to trace (f(€2)).
This leaves a theoretical gap that was implicitly acknowledged in the quoted
sentence.

In practice, though, the statistical variation in the computation of the
expectation of the indicator 1[L(®) (uy; f)+ U (u; f)] is much wider than
its possible bias, so that numerical experiments in [1], [18] together with the
use of statistical inequalities seemed to provide reliable estimates.

We are now in the position to show theoretically that the possible bias
in the above indicator decreases in the limit of increasing Jacobi matrix size,
actually in a wider context than originally considered in [1].

Proposition 2 Let Q be an n x n symmetric matriz. Let u € R™ be a random
vector whose entries are independent, equally distributed random wvariables of zero
mean and unit variance, and let f be a completely monotonic real function. Then,
the expectation of the random variables G (pu, f) and R(K'H)(ﬂu, f) converge to
trace (f(€2)) when £ tends to infinity.

Proof On the one hand, each quadrature in the proposition is a function of the
random vector u in the probability space R", which is drawn according to a generic
Borel probability measure p(u). On the other hand, when the moment problem is
determined, which is always the case for the spectral measure py of a finite matrix
Q (the result extends to a much larger family of operators) for any fixed vector u
the sequence g (pu, f) converges monotonically (for a completely monotonic f) to
Jf(z) dpa(z), which is equal to (u, f(Q)u). Therefore, we can apply Beppo Levi’s
theorem to prove that

Jim [ap()6® G, ) = /dp<u> tim 6, f) = (22)
/dp /f ) dpu(x /dp (u, F(Q)u) = trace ((2).

The first term in the above equation is the limit of the expectation of the random
variable G(¥) (ttu, f) that therefore converges to the expectation of the random vari-
able (u, f(©)u), which, in force of Proposition 1, is equal to the trace of f(Q), see
also (23), (24) below. Similar reasoning applies to the upper bounds provided by
Gauss—Radau quadrature. O

It is evident that, in exact arithmetic, when 2 is a finite matrix the limit
in the above proposition is certainly achieved at ¢ = n. Since ¢ is typically
smaller than n in applications, the monotonic decrease of the bias predicted
theoretically is of practical relevance. As mentioned before, the argument can
be extended to more general operators in Hilbert spaces of infinite dimension,
like e.g the multiplication operator by x in L? 1> when p is a singular continuous
measure [32], where the limit for ¢ tending to infinity is essential.

Summarizing, the quantities 1 Zle LO(uy; f)and £ Zle U (ug; f)
are stochastically distributed, with standard deviation inversely proportional

o Vk, around a mean value which tends to the trace of f(Q) when ¢ grows. In

11
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the practical implementation the individual components of u, are conveniently
chosen as random variables taking the two values one and minus one with equal
probability—the so-called Zs noise—divided by y/n to achieve normalization.

When the size n of 2 is exceedingly large, affordable values of k imply that
the above standard deviations are much larger than the difference between
the two sample averages: it is then unnecessary to consider (and compute)
both. In force of the central limit theorem, the distribution of these samples
approaches a normal one for k large, yielding stricter probabilistic bounds than
those obtained by Hoeffding’s inequality [18].

5 Stochastic evaluation of the Jacobi matrix of
the eigenvalue counting measure

As described at the beginning of Subsection 3.1, Algorithm 2 with the identity
matrix as starting “vector” yields the sequence of matrix orthogonal polynomi-
als p;(€2). It requires the computation of the scalar products (p;(€2), 2"p;(2)),
where r can take the values zero and one. Since the scalar product (9) is
defined as the trace of an operator, it is computed by a summation involving
all basis vectors e;, i = 1 to n, as in (4), or quite equivalently all matrices
E.,m=1,...,g, as in (6). Clearly, the computational complexity of this pro-
cedure grows as n times the complexity of the matrix-vector product, which
is the most computationally demanding task and is linear in n in the case of
sparse {2 as in complex network applications.

A stochastic implementation of the Lanczos algorithm for the Jacobi matrix
of the counting measure that vastly reduces computational complexity was
described in [18] Sect. 10, Algorithm 5 remark just following. The core of the
algorithm coincides with steps 1 to 8 in the Global Lanczos algorithm proposed
in [19]. In fact, the stochastic method starts from constructing k& normalized
random vectors u, as in the previous section, but it assembles them in an n x k
random matrix U = [uy, ug, - - - , ug]. The Global Lanczos algorithm 2 is then
applied to U. The difference between the scalar version (Algorithm 1) and the
global version (Algorithm 2) can be appreciated by spelling out the steps in
the latter. In fact, taking into account the structure of the recursion relation
and of the scalar product, the sequence of operations can be described as in
Algorithm 4.

A few important remarks are in order. Firstly, observe the difference
between Algorithm 3 and 4. While they take the same input and attempt to
compute the same quantity, the procedure is different. In fact, Algorithm 3
computes the Jacobi matrices J ) (j1,, ) of the local density of states i, in (13)
and successively employs Proposition 2. At difference, Algorithm 4 aims at a
stochastic computation of the Jacobi matrix of the global density of states, via
the measure py in (20). To put it even more clearly, while in the former algo-
rithm each stochastic vector u, yields a Jacobi matrix J) (i), in the latter
the vectors u, conspire to form a single Jacobi matrix J® (uu), as can be
noted in lines 6 and 10 of Algorithm 4 that are outside the loop 7-9. The two
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Algorithm 4 Stochastic computation of trace (f(£2)) via the Jacobi matrix of
the eigenvalue counting measure

Require: Matrix Q@ € R™ ", sample random matrix U = [uj,ug, -, ug]
with normalized columns us € R™, s = 1,...,k, Jacobi matrix size /,
completely monotonic function f

Ensure: stochastic approximation of trace(f(Q)) =~ 2(LO(U; f) +
Ut (s f)

1: bo =1
2: fors=1,..., kdo
3: Ugs =Us, u_15=0
4: end for
5. for j=1,..., ¢ do
_ 1 k

6 a1 = 2y (Wi, QU1 )
7: fors=1,..., kdo
8: rjs=0u_1s—a;_1-1,5s —bj_1uj_2
9: end for

2 _ 1k . .
10: bj =% Zs=1<rj,5’r]75>

11: bj = \/%

12: fors=1,..., kdo

13: u;s =r;/b;

14: end for

15: end for

16: Compute the Gauss rule LY (U; f) := GO (uy, f) via the Golub-Welsch
algorithm [28] applied to J© (uy)

17: Enlarge J (uy) to yield JEHD (fiy)

18: Compute the Gauss-Radau rule U (U; f) := REHD (g, f) via the
Golub-Welsch algorithm [28]

procedures yield different results that rapidly converge to the same limit when
¢ grows. Numerical experience (see Section 6) suggests that this convergence
can be quite rapid, also profiting from the phenomenon of self-averaging [33]
of large matrices. The arguments in Proposition 2 can be repeated verbatim
in this case, leading to the following result.

Proposition 3 Let Q2 be an n X n symmetric matriz. Let U be a random n X k
matrix whose entries are independent, equally distributed random variables of zero
mean and unit variance, and let f be a completely monotonic real function. Then,
the expectation of the random variables Q(e)(pU,f) and R<e+1)(ﬂU,f) converge to
trace (f(Q2)) when € tends to infinity.

Proof Since U is a random n X k matrix, the equation ( becomes

22)
Jlim /dp W6 (uy, /dp Jim 6O (g, f) = /dp<U><U,f<mU>, (23)
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where p(U) is a probability measure over R™* k, which is the product of k probability

measures p(u) over R" employed in Proposition 2, and it is finally the product of
n X k real probability measures p(z) of null mean and unit variance. The right hand
side of (23) is precisely equal to trace (f(€2)) because

/dp( )(U, QU) i ;/ ) (us,q;)% = (24)

S

Since fdp(as)ac2 = 1 is the variance of p(z) and since Z?:1<ei,qj>2 =1 by normal-
ization of the eigenvectors. A similar reasoning applies to the upper bounds provided
by R (). O

n

Z(eh qj>2 = trace (2).

=1

\

6 Estimating the von Neumann entropy of
graphs

As described in the Introduction, the von Neumann entropy is obtained by
choosing
f(z) = —zlog(), (25)
where we define 0log(0) = 0 by convention [3]. Simple calculations show that
(=1)'f®(2) < 0 for £ > 2, which implies that the previous theory can be
applied for Jacobi matrices of rank larger or equal to two, switching the role
of Gauss and Gauss-Radau quadratures because of the reversed inequality.
This section presents the results of numerical experiments on the perfor-
mance of the methods described in the previous sections. The operator {2 under
consideration is the (normalized) Laplacian operator L of several undirected
networks. This matrix is defined from A;;, the adjacency matrix, which takes
the value one when nodes 7 and j are connected and zero otherwise, and D, the
diagonal matrix of the nodes’ degrees, that is, the number of links connecting
a single node:
L=D-A. (26)
Normalization is effected by dividing by trace (L), thereby obtaining a density
matrix
Q = L/ trace (L),
with non-negative spectrum and unit trace. The entropy function f defined in
(25) is then most appropriately applied to this matrix €. Such von Neumann
entropy has therefore been previously computed in several works, see [6] and
references therein. We have applied the previous techniques to this problem.
Codes have been programmed in Matlab R2021a. Computations have
been performed on an Intel Xeon Gold 6136 computer (16 cores, 32 threads)
equipped with 128 GB RAM, running the Linux operating system.
We test algorithms 1-4 on the following undirected networks:

Yeast (2114 nodes, 4480 edges) describes the protein interaction network for
yeast. Each edge represents an interaction between two proteins [34, 35]. The



Estimating the trace of matriz functions with application to complex networks

data set was originally included in the Notre Dame Networks Database, and
it is now available at [36].

Internet (22963 nodes, 96872 edges) is a symmetrized snapshot of the structure
of the Internet at the level of autonomous systems, reconstructed from BGP
(Border Gateway Protocol) tables posted by the University of Oregon Route
Views Project. This snapshot was created by Mark Newman from data for
July 22, 2006 [37].

Collaboration (40421 nodes, 351304 edges) is the collaboration network
of scientists who submitted preprints to the condensed matter archive at
www.arxiv.org [38] between January 1, 1995, and March 31, 2005. The original
network is weighted, here we consider an unweighted version [37].

Facebook (63731 nodes, 1545686 edges) is the largest example we consider. It
describes all the user-to-user links (friendships) of the Facebook New Orleans
network. It was studied in [39], and the data set is available at [40].

The methods employed are labeled in what follows:

Full diagonalization :  This  method  computes  trace(f(2)) as
— 27:1 Ajlog (A;), where the eigenvalues A; are obtained by full numerical
diagonalization, through the eig function of Matlab, since the computation
of \; is well-conditioned being 2 positive semidefinite. We consider this value
to be the reference value of the trace. In particular, the error reported both in
the tables and in the figures below is the relative error of the other methods
with respect to this value.

Scalar Lanczos : This method computes trace (f(2)) as in (4), where each

quadratic form Q(e;; f), i =1,...,n, is approximated as in Algorithm 1.
Global Lanczos : This method computes the trace as in (6), where each
quadratic form Q(E,; f), m = 1,...,g, is approximated as explained in

Section 3.1, Algorithm 2.

Monte Carlo : This method employs the procedure described in Subsection 4,
Algorithm 3.

Block Monte Carlo : This method employs the procedure described in Subsec-
tion 5, Algorithm 4.

The cardinality of the set of random vectors for (Block) Monte Carlo is k
like the number of columns of the matrices E,, in Global Lanczos, which we
recall reduces to scalar Lanczos for k = 1.

In the first comparison, the number of Lanczos steps £ is not fixed a priori,
but is chosen on the go to ensure that

GOy, f) = R (ay, f)
GO (v, f)

where the set S is defined in Table 1 depending on the algorithm. We test the
previous algorithms for three values of the parameter & = 10, 20, 30. Tables 2—
5 shows the relative errors, with respect to the true trace (f(£2)) obtained by
full diagonalization, and the related CPU time. For all networks, the proposed

<1073, Vv eSS, (27)
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Block Monte Carlo method is robust with respect to the stopping criteria (27)
providing a relative error comparable with Global Lanczos but with a much
lower CPU time. On the other hand, the CPU time is comparable with the
Monte Carlo method, in particular for the large networks in tables 4 and 5,
but with a lower relative error. The low accuracy of the Monte Carlo method
is due to the fact that the stopping criterion is applied to each vector ug
separately, stopping earlier than in the Block Monte Carlo. Nevertheless, for
the large networks “Collaboration” and “Facebook”, the CPU time of Block
Monte Carlo is lower than that of Monte Carlo.

Table 1 Set S of the “vectors” that have to satisfy the stopping criteria (27)

Method S
Scalar Lanczos {e;eR":i=1,...,n}
Global Lanczos {Em eRkim=1,...,g}
Monte Carlo {us eR™:s=1,...,k}
Block Monte Carlo {U € R”Xk}

Table 2 Performance of the different methods for the Yeast network (n = 2114)

k Method Error Time (s)

1 Scalar Lanczos 2.760638e-02 2.446410e-01

Global Lanczos 8.455259e-04  1.161382e+4-00
10 Monte Carlo 1.090971e-01 1.447850e-03
Block Monte Carlo  3.760693e-03 1.142855e-02

Global Lanczos 9.816665e-04 7.319500e-01
20 Monte Carlo 1.092738e-01 2.599600e-03
Block Monte Carlo  3.690083e-03 1.756205e-02

Global Lanczos 1.026877e-03 8.089930e-01
30 Monte Carlo 1.094411e-01 3.702750e-03
Block Monte Carlo  3.879727e-03 2.527865e-02

To provide a fair comparison between Block Monte Carlo and Monte Carlo
methods, we run the two methods for the same value of k = 5,10, 15,...,200
and the same number ¢ = 2,3,...,10 of Lanczos steps comparing the rela-
tive errors and the CPU time. Figures 1 and 2 show the relative error and
the CPU time, respectively, varying k and ¢ in the ranges above. Each pixel
is color-coded according to the color bar on the right of each graph. The col-
ors of different graphs cannot be directly compared but must be interpreted
according to their color bar. In both figures, the first row contains the results
for the Yeast network, while in the second row there are the results for the
Internet network. From the first to the third column, we find in sequence the
global Lanczos method, the Monte Carlo method, and the Block Monte Carlo
method.
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Table 3 Performance of the different methods for the Internet network (n = 22963)

k Method Error Time (s)
1 Scalar Lanczos 4.614127e-03  6.047011e+01
Global Lanczos 5.102064e-04  1.383564e+02
10 Monte Carlo 2.011468e-01 3.198965e-02
Block Monte Carlo  8.272466e-04 1.036716e-01
Global Lanczos 5.147810e-04  1.393176e+02
20 Monte Carlo 2.012633e-01 6.562980e-02
Block Monte Carlo  7.080867e-04 1.754521e-01
Global Lanczos 5.159189e-04  1.529930e+-02
30 Monte Carlo 2.013468e-01 9.623835e-02

Block Monte Carlo

5.407044e-04

2.399765e-01

Table 4 Performance of the different methods for the Collaboration network (n = 40421)

k Method Error Time (s)
1 Scalar Lanczos 5.633735e-03  3.222226e+02
Global Lanczos 2.120762e-04  2.886263e+02
10 Monte Carlo 6.380080e-02 1.000027e-01
Block Monte Carlo  5.859218e-04 1.092159e-01
Global Lanczos 1.753134e-04  2.812086e+02
20 Monte Carlo 6.376821e-02 2.111761e-01
Block Monte Carlo  4.526990e-04 1.928351e-01
Global Lanczos 1.612020e-04  2.511428e+02
30 Monte Carlo 6.371428e-02 3.109078e-01

Block Monte Carlo

2.868224e-04

2.585439e-01

The first comparison of the CPU times confirms that the two stochastic
methods require a CPU time much lower than the global Lanczos method.
Moreover, for the two stochastic methods, the CPU time increases both with k
and £. On the other hand, for global Lanczos, according to the results in [19],
for a fixed ¢, the CPU time can decrease when increasing k. Comparing the two
stochastic methods, we observe that for the Yeast network the block Monte
Carlo method reduces the CPU time with respect to the Monte Carlo method
by a factor two, while for the larger network Internet the reduction factor is
about 4. This leads us to expect even greater reductions in computation time
for larger problems.

Concerning the relative errors, Figure 1 shows that all methods produce
comparable results. Clearly, the relative error reduces increasing ¢, while it
is not very sensitive varying k£ > 10. In particular, for the two stochastic
methods, already a few random vectors, e.g. k = 20, are enough to achieve
an accurate enough approximation. This behaviour is in agreement with the

17
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Table 5 Performance of the different methods for the Facebook matrix (n = 63731)

k Method Error Time (s)

1 Scalar Lanczos 1.479209e-03  3.872303e+03

Global Lanczos 4.069790e-04  2.370421e+03
10 Monte Carlo 7.523729¢-02  7.350576e-01
Block Monte Carlo  2.918577e-04 4.855025e-01

Global Lanczos 3.937851e-04  2.372613e+03
20 Monte Carlo 7.517143e-02  1.580860e+00
Block Monte Carlo  2.681684e-04 8.418812e-01

Global Lanczos 3.911914e-04  2.526310e+03
30 Monte Carlo 7.516319e-02  2.360758e+00
Block Monte Carlo  2.956494e-04  1.236741e+00
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40 26
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-14
16
18
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22
8 10

Fig. 1 Relative error varying k = 5,10,15,...,200 and ¢ = 2,3,...,10. Compare global
Lanczos method (first column), Monte Carlo method (second column), block Monte Carlo
method (third column) for Yeast network (first row) and Internet network (second row).

results in [41] for the scalar Algorithm 3. The two stochastic methods provide
about the same relative error although this is usually slightly lower for the
block Monte Carlo method, see Figure 3 where the depicted values, which are
obtained by subtracting the relative errors for the block Monte Carlo method
from the relative errors for the Monte Carlo method, are usually positive.
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Fig. 2 CPU time varying k = 5,10,15,...,200 and ¢ = 2,3, ...,10. Compare global Lanc-
zos method (first column), Monte Carlo method (second column), block Monte Carlo method
(third column) for Yeast network (first row) and Internet network (second row).
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Fig. 3 Difference of the relative error between Monte Carlo method and the block Monte
Carlo Method varying k& = 5,10,15,...,200 and ¢ = 2,3,...,10, for Yeast network (left)
and Internet network (right).

7 Conclusions

In this paper, we have reviewed various Lanczos techniques for computing
the trace of a matrix function. In particular, we have focused on the stochas-
tic approach that was originally presented in [1] for matrix elements—whose
associated measure is the local density of states—and later generalized to the
global density of states in [18]. Interpolating among these extremes we have
defined a block version of such algorithms in a similar fashion to the partial
global Lanczos method in [19].
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The block Monte Carlo method exhibits interesting properties with respect
to accuracy and computational time. Indeed, the numerical results performed
to evaluate the Von Neumann entropy of complex networks, show that it is
faster than the algorithm in [1], usually providing a better approximation of
the solution. Such promising results lead us to believe that the technique might
be useful for the general problem (1), when dealing with large matrices, like
in the theory of complex networks (see e.g. the Estrada index studied in [19])
and also in more challenging quantum mechanical applications.
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