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Abstract: Identifying the most important nodes according to specific centrality indices is an important
issue in network analysis. Node metrics based on the computation of functions of the adjacency matrix
of a network were defined by Estrada and his collaborators in various papers. This paper describes a
MATLAB toolbox for computing such centrality indices using efficient numerical algorithms based
on the connection between the Lanczos method and Gauss-type quadrature rules.
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1. Introduction

Let G be a connected, undirected, unweighted graph with a large number of nodes
n and significantly fewer than n2 edges. We assume there are no self-loops or multiple
edges in G. Networks represented by such kinds of graph are found in many applications,
such as epidemiology, genetics, telecommunications, and energy distribution; see [1–4]. It
is usual to associate to the graph G a symmetric adjacency matrix A = [Aij] ∈ Rn×n with
entries Aij = 1, if nodes i and j are connected by an edge, and Aij = 0, otherwise.

It is often meaningful to extract from a large graph numerical values describing global
properties of the graph, such as the ease of traveling between vertices, or the importance of
a chosen node. A walk in a network is an ordered list of nodes such that successive entries
of the list are connected. A well-known fact in graph theory is that the number of walks of
length m ≥ 1 starting at node i and ending at node j is given by [Am]ij, i.e., the entry (i, j)
of the m-th power of the adjacency matrix. Let us assume that the coefficients cm in the
matrix-valued function

f (A) =
∞

∑
m=0

cm Am (1)

are nonnegative and decay fast enough to ensure convergence of the series. Then, the ease
of traveling between the nodes i and j can be measured by [ f (A)]ij, with i 6= j, while the
importance of node i can be quantified by [ f (A)]ii.

A common choice (see [2,3,5,6]) is to set the coefficients cm in (1) to be nonincreasing
positive functions of m, with the aim of attributing less importance to long walks than to
short ones. For example, cm = 1/m! [7] yields the matrix exponential

f (A) = exp(A), (2)

while setting cm = αm, with 0 < α < (ρ(A))−1, where ρ(A) denotes the spectral radius of
A, leads to the resolvent

f (A) = (I − αA)−1. (3)

Let e = [1, 1, . . . , 1]T ∈ Rn and let ei = [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rn be the axis vector
with the ith component equal to 1. As usual, the superscript T denotes transposition. The
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following definitions, which are discussed in [2,3,5,6,8,9], are motivated by the discus-
sion above:

• the degree of node i, given by [Ae]i = eT
i Ae, provides a measure of the importance of

node i;
• the f -subgraph centrality of node i, defined by

[ f (A)]ii = eT
i f (A)ei, (4)

furnishes a more sophisticated measure of the importance of node i than its degree;
• the f -communicability between nodes i and j,

[ f (A)]ij = eT
i f (A)ej, (5)

quantifies the ease of traveling between nodes i and j;
• the f -starting convenience of node i, given by

eT f (A)ei

eT f (A)e
, (6)

quantifies the ease of traveling from node i to anywhere in the network. This is the
sum of the communicabilities from node i to all other nodes, scaled so that the sum of
the quantity over all nodes is one.

Please note that all the centrality measures (4)–(6) are of the form

uT f (A)v (7)

for specific vectors u and v. The purpose of this paper is to present a software pack-
age that makes it easy to compute the above defined centrality measures, whose use
and methods for their computation have received considerable attention in the literature;
see [2,3,5–22] as well as many other references. In these references, many real applications
are discussed.

When the adjacency matrix A is large, i.e., when the graph G has many nodes, direct
evaluation of f (A) generally is not feasible. Benzi and Boito [11] applied pairs of Gauss
and Gauss–Radau rules to compute upper and lower bounds for selected entries of f (A).
This work is based on the connection between the symmetric Lanczos process, orthogonal
polynomials, and Gauss-type quadrature, explored by Golub and his collaborators in many
publications; see Golub and Meurant [23,24] for details and references. A brief review
of this technique is provided in Section 2. An application of pairs of block Gauss-type
quadrature rules to simultaneously determine approximate upper and lower bounds of
expressions of the form (7) when u and v are “block vectors”, i.e., matrixes with many rows
and very few columns, is described in [9].

The main drawback of quadrature-based methods is that the computational effort is
proportional to the number of desired bounds. Therefore, these methods may be expensive
to use when bounds for many expressions of the form (7) are to be evaluated. This situation
arises, for instance, when we would like to determine one or a few nodes with the largest
f -subgraph centrality in a large graph, because this requires the computation of upper and
lower bounds for all diagonal entries of f (A).

A method to produce upper and lower bounds for quantities of the form (7) was
proposed in [20]. It is based on that knowledge of a few leading eigenvalue-eigenvector
pairs gives bounds for every entry of f (A), with little computational effort in addition
to computing the eigenvalue-eigenvector pairs. For example, determining the m most
important nodes of a graph, with m much smaller than the number of nodes n, amounts
to finding the m nodes with the largest f -subgraph centrality. It is possible to quickly
evaluate bounds for all entries [ f (A)]ij if a partial spectral factorization of A is available.
Using these bounds, we can determine a set of ` ≥ m nodes containing the m nodes of
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interest, and compute tighter bounds for the nodes in this set, if necessary, by employing
Gauss-type quadrature rules. When `� n, the complexity of this hybrid algorithm is much
smaller than computing upper and lower bounds for all entries [ f (A)]ii, i = 1, . . . , n, by
Gauss quadrature.

In this work, we present a MATLAB package for the identification of the m most
important nodes according to the centrality/communicability indices discussed above,
based on two matrix functions, namely the exponential (2) and the resolvent (3). Either
the f -subgraph centrality, the f -communicability, or the f -starting convenience can be
computed. The computation can be performed using one of three different methods: Gauss
quadrature, partial spectral factorization, or the hybrid method; the latter two algorithm
have been introduced in [20].

This paper is organized as follows. Section 2 recalls how upper and lower bounds
for quantities of the form (7) can be determined via Gauss quadrature. Approximation
via partial spectral factorization of A is discussed in Section 3 and the hybrid method is
summarized in Section 4. Section 5 presents the SoftNet package as well as a graphical
user interface (GUI) that simplifies its use. A brief description of the code and its use
also is provided. Section 6 describes some numerical experiments and Section 7 contains
concluding remarks.

2. Approximation by Gauss Quadrature

Let A be a symmetric matrix of order n and suppose that we are interested in comput-
ing bounds for bilinear forms

Fu,v(A) := uT f (A)v, (8)

where u and v are given vectors and f is a smooth function defined on an interval [a, b] ⊂ R
that contains the spectrum of A. Since

Fu,v(A) =
1
4
(Fu+v,u+v(A)− Fu−v,u−v(A)),

we can focus on the case u = v.
The matrix A has the spectral decomposition A = QΛQT . Then we can write

Fu,u(A) = uTQ f (Λ)QTu = µT f (Λ)µ =
n

∑
i=1

f (λi)µ
2
i =

∫ b

a
f (λ) dµ(λ), (9)

i.e., we may regard Fu,u(A) as a Stieltjes integral; see [20,24] for further details. We approxi-
mate this integral by Gauss-type quadrature rules as follows. Let u be of unit Euclidean
norm. Application of k steps of the Lanczos algorithm to A with initial vector u gives the
k× k symmetric tridiagonal matrix Tk. It can be shown that eT

1 f (Tk)e1 is a k-node Gauss
quadrature rule Gk for the Stieltjes integral (9). A (k + 1)-node Gauss–Radau quadrature
formula Ĝk+1 with a fixed node at θ ≥ ρ(A) for approximating the Stieltjes integral also
can be defined. This discussion assumes that the Lanczos algorithm does not break down.
Breakdown is very rare and allows the computations to be simplified.

Under the assumption that the derivatives of f (x) have constant sign on the convex
hull of the support of the measure, which is met by the functions (2) and (3), and the Radau
node θ is suitably chosen, pairs of Gauss and Gauss–Radau rules furnish lower and upper
bounds of increasing accuracy for the quadratic form (9). For the functions (2) and (3),
and the Radau node θ chosen as described, we have

Gk ≤ Gk+1 ≤ Fu,u(A) ≤ Ĝk+2 ≤ Ĝk+1.

For a user-chosen accuracy τ, we terminate the iterations with the Lanczos algorithm when

|Gk − Ĝk+1|
|Gk|

≤ τ. (10)
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The default value in the code is τ = 10−3.
The matrix functions are applied to the tridiagonal matrixes using their spectral factor-

ization. Thus, let Tk = WkΛkWT
k be the spectral factorization. Then f (Tk) = Wk f (Λk)WT

k .
When f is the exponential function, we let µ be the largest eigenvalue of Tk and evaluate

e−µeTk = eTk−µI = WeΛk−µIWT (11)

instead of eTk to avoid overflow.
Regarding the choice of the Radau node θ, we often may let θ = ‖A‖∞. Alternatively,

we can use the MATLAB function eigs or the function irbleigs described in [25,26] to
determine an estimate of the largest eigenvalue λ1 of A.

3. Bounds via Partial Spectral Factorization

This section recalls how to derive bounds for expressions of the form (8), with ‖u‖ =
‖v‖ = 1, using a partial spectral factorization of A. Introduce the spectral factorization

A = QΛQT ,

where the eigenvector matrix Q = [q1, q2, . . . , qn] ∈ Rn×n is orthogonal and the eigen-
values in the diagonal matrix Λ = diag[λ1, λ2, . . . , λn] ∈ Rn×n are ordered according to
λ1 ≥ λ2 ≥ · · · ≥ λn. Then

f (A) = Q f (Λ)QT =
n

∑
k=1

f (λk)qkqT
k ,

so that

Fu,v(A) = uT f (A)v =
n

∑
k=1

f (λk)ũk ṽk,

where ũk = uTqk and ṽk = vTqk. Let the first N eigenpairs {λk, vk}N
k=1 of A be known.

Then Fu,v(A) can be approximated by

Fu,v(A) ≈ F(N)
u,v :=

N

∑
k=1

f (λk)ũk ṽk. (12)

The following results from [20] shows how upper and lower bounds for Fu,v(A) can be
determined with the aid of the first N eigenpairs of A.

Theorem 1. Let the function f be nondecreasing and nonnegative on the convex hull of the
spectrum of A and let F(N)

u,v be defined by (12). Let λ1 ≥ λ2 ≥ · · · ≥ λN be the N largest
eigenvalues of A and let q1, q2, . . . , qN be associated orthonormal eigenvectors. Then we have

L(N)
u,v ≤ Fu,v(A) ≤ U(N)

u,v , (13)

where

L(N)
u,v := F(N)

u,v − f (λN)

(
1−

N

∑
k=1

ũ2
k

)1/2(
1−

N

∑
k=1

ṽ2
k

)1/2

,

U(N)
u,v := F(N)

u,v + f (λN)

(
1−

N

∑
k=1

ũ2
k

)1/2(
1−

N

∑
k=1

ṽ2
k

)1/2

.

When u = v, we have
F(N)

u,u ≤ Fu,u(A) ≤ U(N)
u,u (14)
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and
F(N)

u,u ≤ F(N+1)
u,u , U(N)

u,u ≥ U(N+1)
u,u , 1 ≤ N < n. (15)

To determine which nodes have the largest f -subgraph centrality (4), we use the
inequalities (14) and (15). The N leading eigenpairs {λk, qk}N

k=1 of A and the bounds (13)
and (14) can be used to determine a subset of nodes that contains the vertices with the
largest value of the node metric we are considering.

Let L(N)
u,v and U(N)

u,v be the lower and upper bounds defined in Theorem 1. Since we
seek an approximation of the centrality value for all the nodes of the network, we will
either set u = v = ei, as in (4), or u = e and v = ei, as in (6). So, F(N)

u,v will be a quantity
depending on an index i = 1, . . . , n. We will write F(N)

i = F(N)
u,v to simplify the notation

when we are computing either F(N)
ei ,ei or F(N)

e,ei . When approximating (5), we will fix a value

of j and consider F(N)
i = F(N)

ej ,ei for i = 1, . . . , n.

Let F (N)
m denote the mth largest value of the vector (F(N)

i )n
i=1. Then the index sets

S(N)
m =

{
i : U(N)

u,v ≥ F
(N)
m

}
, N = 1, 2, . . . , n. (16)

contains the indices of the nodes that can be considered important with respect to the
desired centrality index.

A computational difficulty to overcome is that we do not know in advance how
the dimension N of the leading invariant subspace span{v1, v2, . . . , vN} of A should be
chosen in order to obtain useful bounds (13) or (14). We use the restarted block Lanczos
method irbleigs described in [25,26], which computes the leading invariant subspace
{λk, qk}`k=1 of A for a user-chosen dimension `, and allows the extension of such subspace
by successively increasing the value of `. Using irbleigs, we compute more and more
eigenpairs of A until N is such that

|S(N)
m | = m, (17)

where |S| denotes the number of elements of the set S. This stopping criterion is referred to
as the strong convergence condition. As shown in [20], the set S(N)

m contains the indices of the
m nodes with the largest f -subgraph centrality.

The criterion (17) for choosing N is useful if the required value of N is not too large.
The weak convergence criterion has been introduced to be used for problems for which
a large value of N is required in order to satisfy (17), and this makes it impractical to
compute the associated bounds (13). The weak convergence criterion is also well suited for
applications in the hybrid algorithm described in Section 4. This criterion is designed to
stop increasing N when the values F(N)

u,v do not increase significantly with N. Specifically,
we stop increasing N when the average increment of the values in the vector F(N)

u,v is small
when the Nth eigenpair {λN , qN} is included in the bounds. The average contribution of
this eigenpair to F(N)

u,v , 1 ≤ i ≤ n, is

Fi = f (λN)[ũN ]i[ṽN ]i

see (12), and we stop increasing N when

1
n

n

∑
i=1

Fi < τ · F (N)
m (18)

for a user-specified tolerance τ, whose default value in the code is 10−3. Please note that
when this criterion is satisfied, but not (17), the nodes with index in S(N)

m and with the
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largest value F(N)
u,v are not guaranteed to be the nodes with the largest index value we are

searching for.
Furthermore, the weak convergence criterion (18) may yield a set S(N)

m with many
more than m indices. In particular, we may not be willing to compute accurate bounds for
a specific node metric by applying the approach of Section 2 to all nodes with index in S(N)

m .
We therefore describe how to determine a smaller index set J , which is likely to contain
the indices of the m most important nodes. We discard from the set S(N)

m indices for which
F(N)

u,v is much smaller than F (N)
m . Thus, for a user-chosen parameter σ > 0, we include in

the set J all indices i ∈ S(N)
m such that

F (N)
m − F(N)

u,v < σ · F (N)
m .

The default value for σ in the software is 10−3.

4. The Hybrid Method

We summarize here the algorithm corresponding to the hybrid method. The first step
is to compute a partial spectral factorization of the adjacency matrix A. Such a partial
factorization makes it possible to determine a set of candidate nodes that contains the
most important nodes according to a chosen criterion, e.g., the f -subgraph centrality. The
accuracy of upper and lower bounds for the candidate nodes is then improved by a suitable
application of Gauss and Gauss–Radau quadrature rules.

5. The SoftNet Software Package

The package SoftNet for MATLAB is available at the web page http://bugs.unica.it/
cana/software (accessed on 20 August 2022) as a compressed archive. Uncompressing it,
a directory named SoftNet will be created; in order to use the package the user should add
its name to the search path. The package SoftNet consists of 14 MATLAB routines for the
identification of the m most important nodes in a network according to different centrality
indices. The package also includes the function irbleigs from [25,26], and the following
5 adjacency matrixes of real-world networks that can be used to test the software

• karate (34 nodes, 78 edges): represents the social relationships among the 34 individ-
uals of a university karate club [27];

• yeast (2114 nodes, 4480 edges): describes the protein interaction network for
yeast [28–30];

• power (4941 nodes, 13,188 edges): undirected representation of the topology of the
western states power grid of the United States [27,31];

• internet (22,963 nodes, 96,872 edges): snapshot of the structure of the Internet at the
level of autonomous systems from data for 22 July 2006 [27];

• collaborations (40,421 nodes, 351,304 edges): collaboration network of scientists
who posted preprints at www.arxiv.org (accessed on 20 August 2022) between 1 Jan-
uary 1995 and 31 March 2005 [27,32];

• facebook (63,731 nodes, 1,545,686 edges): user-to-user links (friendship) from the
Facebook New Orleans network, studied in [33] and available at [34].

The package Contest by Taylor and Higham [35] contains different kinds of synthetic
networks and can be used to generate further numerical tests. We provide a convenient
interface to this package.

Table 1 lists the 14 MATLAB routines with a description of their purpose. The first
group, “Computational Routines,” includes the functions for computing different cen-
tralities (subgraph centrality (4), communicability (5), and starting convenience (6)) with
respect to two different matrix functions, the exponential (2) and the resolvent (3). The com-
putations can be performed with three different methods, namely the Gauss quadrature
method recalled in Section 2, the low-rank approximation presented in Section 3 and the

http://bugs.unica.it/cana/software
http://bugs.unica.it/cana/software
www.arxiv.org
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hybrid method described in Section 4. The section “Auxiliary Routines for the Graphical
User Interface” lists some routines required to start and use the graphical user interface.

Table 1. Routines and GUI.

Computational Routines

commgauss Identifies the m most important nodes according to f -communicability of node i through Gauss
quadrature; see Section 2.

commhyb Identifies the m most important nodes according to f -communicability of node i through partial
singular value decomposition (SVD) and Gauss quadrature; see Section 4.

commlr Identifies the m most important nodes according to f -communicability of node i through partial
SVD; see Section 3.

gaussexp Computes the bilinear form uT f (A)v, with f (A) = exp(A) through Gauss quadrature; see
Section 2.

gaussres Computes the bilinear form uT f (A)v, with f (A) = (I − αA)−1 through Gauss quadrature; see
Section 2.

sgcengauss Identifies the m most important nodes according to f -subgraph centrality through Gauss quadra-
ture; see Section 2.

sgcenhyb Identifies the m most important nodes according to f -subgraph centrality through partial SVD
and Gauss quadrature; see Section 4.

sgcenlr Identifies the m most important nodes according to f -subgraph centrality through partial SVD;
see Section 3.

stconvgauss Identifies the m most important nodes according to f -starting convenience through Gauss quadra-
ture; see Section 2.

stconvhyb Identifies the m most important nodes according to f -starting convenience through partial SVD
and Gauss quadrature; see Section 4.

stconvlr Identifies the m most important nodes according to f -starting convenience through partial SVD;
see Section 3.

Auxiliary Routines for the Graphical User Interface

vipnodes Starts the graphical user interface.
compute Performs the computations according to the chosen parameters.
choose_contest Allow selection of a synthetic network from the Contest Package [35].
initialize_gui Initializes the default settings for the graphical user interface.

The computational routines are totally independent of the graphical user interface and
can be used by the user from the MATLAB command line. For example, the command

[vip, vipsgc] = sgcenlr(A,’exp’,10);

identifies the 10 most important nodes according to the subgraph centrality when the low-
rank approximation is used for the computation. vip and vipsgc are vectors containing
the indices of the nodes that are candidates to being the most important nodes and the
values of their subgraph centrality, respectively.

Identifying the five most important nodes of a network whose adjacency matrix is A
with respect to the starting convenience can be done by the following lines of code

func = ’exp’; % the function to be used
nnodes = 5; % the number of nodes to be identified
theta = eigs(double(A),1,’LA’); % estimation of the largest eigenvalue
opts = struct(’gausstolq’,1e-5,’gaussmaxn’,150,’gaussmu’,theta,’show’,1)
[vip, vipsgc, info, iters, allstconv] = stconvgauss(A,func,nnodes,opts);

The third line computes the largest eigenvalue, since its estimation is needed for
the computation of the Gauss–Radau rule. The struct opts is initialized on the fifth line,
where the tolerance (10) for the convergence of Gauss quadrature is chosen, as well as the
maximum number of iterations, and the value µ used for the spectrum shift (11). Setting
the show variable to 1 displays a waitbar during the computations.
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The output values are:

• vip: indices for the most important nodes;
• vipsgc: values of starting convenience for the identified nodes;
• info: a vector containing a flag that indicates convergence and shows the number of

matrix-vector products;
• iters: the number of iterations performed for each node;
• allstconv: the values of the starting convenience for each node.

Table 2 reports a subset of the options used for tuning the performance of the package;
all the options have a default value. Refer to the second column of the table and to the
description of the algorithms in [20] for their meaning. The available options are described
in the various functions.

Table 2. Problem definition and options.

Problem Definition

func function to be used ((2) or (3))
nnodes number of nodes to be identified

Fields for the opts variable

gausstolq tolerance for Gauss quadrature
gaussmaxn maximum number of iterations
gaussmu approximation of the largest eigenvalue for the spectrum shift
alpha constant for the resolvent
show if 6= 0 shows some information during the computation
sgcmaxva maximum number of stored eigenvectors
sgctoll tolerance for weak convergence
sgcshift if 6= 0 applies spectrum shift

All the functions can be used interactively with the vipnodes graphical user interface,
located in the main directory of the package. The GUI starts by typing the command
vipnodes in the MATLAB Command Window; see Figure 1.

Figure 1. The graphical user interface (GUI).
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The GUI consists of one input panel, on the left, and an output area, on the right.
The former allows the user to set different parameters to perform the computations, the lat-
ter shows some information about the loaded network and the results, once the computa-
tions are done. A drop-down menu at the top of the window allows the user to perform
different tasks as follows:

• File. This menu allows the user to load a network in three different ways: load it from
a mat file, extract it from the workspace, and create it using the Contest package [35],
if the latter is installed.

• Export. This menu allows the user to export the results as a mat file, as a text file,
or export them to variables in the workspace.

• Reset. Reset options and computed results or just the results.
• Stop. Interrupt the computations if they take too long time.
• Previous results. Display a table with results of the previous computation.

The first step to complete in order to carry out the computations is to load an adjacency
matrix through the “File” menu at the top left of the main window. Once this task is
done, general information about the network is shown, namely the number of nodes,
the number of edges and, if the network contains self-loops, the number of removed edges.
The parameters are set to their default values, and can be modified by the user. By pressing
the “Find nodes” button the computations start. If the user chooses to show the animation
(this possibility is not given if computation via Gauss quadrature is selected), a new window
“Animation” will appear. It contains a spy plot of the adjacency matrix associated to the
network with the number of non-zero elements, i.e., the number of edges, shown at the
bottom of the figure. Below, the spectrum of A is drawn and the graph is updated once a
new set of eigenvalues is computed. On the right, an animation with the computed lower
and upper bounds when each new eigenpair is added to the sum (13) is shown. If either the
strong or weak convergence criteria are satisfied, then the candidate nodes are highlighted
with red circles. The title of the last graph reports the number of used eigenpair and the
cardinality of the set S(N)

m defined in (16).
Figure 2 shows a typical animation window. In this case, the computations aim to

identify the five most important nodes with respect to the subgraph centrality of the power
network included in the package. The computations were carried out by the low-rank
method with the strong convergence condition. The number of computed eigenpairs is the
minimal integer N such that the cardinality of S(N)

5 is 5.
Figure 3 shows the same window after identifying the same number of nodes as in

Figure 2 by the hybrid method. In this case, the cardinality of the set S(N)
5 is larger than

5, and the final computation to identify the five most important nodes is performed by
Gauss quadrature.

Once the computations are made, the main window shows the following information:

• the method used to perform the computation (low-rank with strong convergence,
hybrid method or Gauss quadrature);

• the line of code that has to be written on the command window to perform the same
computation without using the graphical user interface;

• whether the strong or weak convergence criteria are satisfied (if one of them
was selected);

• the number of used eigenpairs (if either the low-rank or hybrid methods have been
used for the computations);

• the number of VIP nodes identified (if either the low-rank or hybrid methods have
been used);

• the elapsed time;
• a table with the index of the identified nodes and the value of the corresponding

centrality index.
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Figure 2. The animation window after the identification of the five most important nodes for the
Power network by the low-rank approximation method.

Figure 3. The animation window after the identification of the five most important nodes for the
Power network by the hybrid method.
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Figure 4 shows the main window once the computations related to Figure 2 have been
carried out. Figure 5 shows the same window after the hybrid method has been used.

Figure 4. Main window after the identification of the five most important nodes for the Power
network by the low-rank approximation method.

Figure 5. Main window after the identification of the five most important nodes for the Power
network by the hybrid method.

Please note that the lists of nodes produced by the two methods is the same, but the
values of the centrality index are slightly different. This happens because the value of the
subgraph centrality computed by the low-rank approximation is estimated as an average
of the lower and upper bounds computed by the method, while the value computed by
Gauss quadrature is more accurate.
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6. Numerical Experiments

This section provides some numerical experiments to explore the performance of
the centrality indices used in the software, namely the f -subgraph centrality and the
f -starting convenience. In particular, we compare them to the following well-known
centrality indices:

• degree: the number of edges adjacent to a node;
• betweeness: the number of shortest paths that pass through the node;
• closeness: the reciprocal of the sum of the length of the shortest paths between a node

and all other nodes in the graph;
• eigenvector: a score is assigned to each node taking into account connections with

nodes that have high scores;
• pagerank: a variant of the eigenvector centrality.

The computation of the centrality indices listed above has been done by the centrality
function included in Matlab. An example of its usage it is the following:

centr = ’betweenness’; % the centrality to be used
nnodes = 5; % the number of nodes to be identified
G = graph(A); % converts the adjacency matrix A in to the graph G
values = centrality(G,centr); % computes all the centralities of graph G
[∼, node_ind] = sort(values,’descend’); % sorts all the centralities
disp(node_ind(1:nnodes)); % displays the index for the nodes with the largest centrality

The string centr can be set to degree, betweenness, closeness, eigenvector,
and pagerank.

The first network we analyze is the famous Zachary’s karate club network [27]. The
most important nodes of the network are node 1 and node 34, which stand for the instructor
and the club president, respectively.

Each column of Table 3 reports the ranking of the five most important nodes obtained
using the centrality indices listed above, namely degree, betweenness, closeness, eigenvec-
tor, and pagerank centralities, compared with the ranking obtained by the exp-subgraph
centrality, the res-subgraph centrality, the exp-starting convenience, and the res-starting
convenience. The value used for α in (3) is 0.95 · (ρ(A))−1. We remark that for this example,
the ranking is not very sensitive to the choice of the parameter α.

Table 3. Ranking of the five most important nodes for the karate network identified by the
centrality function of Matlab, the f -subgraph centrality, and f -starting convenience.

Degree betw clos eigvec pagerank exp-sgc res-sgc exp-stc res-stc

34 1 1 34 34 34 34 34 34
1 34 3 1 1 1 1 1 1

33 33 34 3 33 33 33 3 33
3 3 32 33 3 3 3 33 3
2 32 9 2 2 2 2 2 2

It is worth noting that all the centrality indices correctly identify nodes 1 and 34 as the
most important ones. The list of the five most important nodes contains the same indices
except for the betweeness centrality, which includes in the list node 32, and the closeness
centrality, which determines that node 32 and 9 are among the five most important nodes.

The second example we are going to consider is the Facebook network included in the
package. The graph has 63,731 nodes and 1,545,686 edges. Neither the exponential nor the
resolvent of the adjacency matrix A can be evaluated in a straightforward manner due to
the large size of the matrix. We therefore apply the hybrid algorithm described in Section 4
to find the 10 most important nodes in the network.

Table 4 reports in each column the ranking of the 10 most important nodes according to
the centrality indices described above and computed by the centrality function of Matlab.
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Table 5 reports the ranking of the 10 most important nodes obtained by the exp-subgraph,
the res-subgraph, the exp-starting convenience and the res-starting convenience. The value
used for α in (3) is 0.95 · (ρ(A))−1 and 0.1 · (ρ(A))−1.

Table 4. Ranking of the 10 most important nodes for the facebook network identified by the
centrality function of Matlab.

Degree Betweenness Closeness Eigenvector Pagerank

2332 554 2332 9904 554
471 471 471 2322 471
554 2332 23 5170 2332
2322 23 554 5157 23
451 451 1463 2362 451
23 280 207 3943 2208

2208 1463 280 7765 1463
9904 207 451 133 423
1463 84 1996 2332 280
3943 1996 2805 1902 207

It can be seen that the considered centrality indices generally produce different rank-
ings. This confirms that they measure different features of the nodes in a network. It is
remarkable to observe that in this example the exp-subgraph centrality and the exp-starting
convenience produce the same list as the eigenvector centrality.

Table 5. Ranking of the 10 most important nodes for the facebook network identified by the f -
subgraph centrality and f -starting convenience.

sgcen_exp sgcen_res(.95) sgcen_res(.1) stconv_exp stconv_res(.95) stconv_res(.1)

9904 9904 2332 9904 9904 2332
2322 2322 471 2322 2322 471
5170 5170 451 5170 5170 451
5157 3943 2208 5157 3943 2208
2362 2362 9904 2362 2362 9904
3943 7765 3943 3943 7765 3943
7765 5157 133 7765 5157 133
133 2332 423 133 2332 423
2332 1902 7765 2332 1902 7765
1902 133 14,253 1902 133 14,253

7. Conclusions

This article introduces the SoftNet toolbox written in MATLAB, designed to compute
the most important nodes of a network by some centrality indices based on the computation
of matrix functions. The methods used to perform the computation were introduced in [20].
The use of the toolbox is illustrated by examples.
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