55 research outputs found

    Toll-6 and Toll-7 function as neurotrophin receptors in the Drosophila melanogaster CNS

    Get PDF
    Neurotrophin receptors corresponding to vertebrate Trk, p75(NTR) or Sortilin have not been identified in Drosophila, thus it is unknown how neurotrophism may be implemented in insects. Two Drosophila neurotrophins, DNT1 and DNT2, have nervous system functions, but their receptors are unknown. The Toll receptor superfamily has ancient evolutionary origins and a universal function in innate immunity. Here we show that Toll paralogues unrelated to the mammalian neurotrophin receptors function as neurotrophin receptors in fruit-flies. Toll-6 and Toll-7 are expressed in the central nervous system throughout development, and regulate locomotion, motoraxon targeting and neuronal survival. DNT1 and 2 interact genetically with Toll-6 and 7, bind to Toll-7 and 6 promiscuously, and are distributed in vivo in complementary or overlapping domains. We conclude that in fruit-flies, Tolls are not only involved in development and immunity but also in neurotrophism, revealing an unforeseen relationship between the neurotrophin and Toll protein families

    Drosophila Neurotrophins Reveal a Common Mechanism for Nervous System Formation

    Get PDF
    Neurotrophic interactions occur in Drosophila, but to date, no neurotrophic factor had been found. Neurotrophins are the main vertebrate secreted signalling molecules that link nervous system structure and function: they regulate neuronal survival, targeting, synaptic plasticity, memory and cognition. We have identified a neurotrophic factor in flies, Drosophila Neurotrophin (DNT1), structurally related to all known neurotrophins and highly conserved in insects.By investigating with genetics the consequences of removing DNT1 or adding it in excess, we show that DNT1 maintains neuronal survival, as more neurons die in DNT1 mutants and expression of DNT1 rescues naturally occurring cell death, and it enables targeting by motor neurons. We show that Spa¨ tzle and a further fly neurotrophin superfamily member, DNT2, also have neurotrophic functions in flies. Our findings imply that most likely a neurotrophin was present in the common ancestor of all bilateral organisms, giving rise to invertebrate and vertebrate neurotrophins through gene or whole-genome duplications. This work provides a missing link between aspects of neuronal function in flies and vertebrates, and it opens the opportunity to use Drosophila to investigate further aspects of neurotrophin function and to model related diseases

    The Glial Regenerative Response to Central Nervous System Injury Is Enabled by Pros-Notch and Pros-NFΞΊB Feedback

    Get PDF
    Organisms are structurally robust, as cells accommodate changes preserving structural integrity and function. The molecular mechanisms underlying structural robustness and plasticity are poorly understood, but can be investigated by probing how cells respond to injury. Injury to the CNS induces proliferation of enwrapping glia, leading to axonal re-enwrapment and partial functional recovery. This glial regenerative response is found across species, and may reflect a common underlying genetic mechanism. Here, we show that injury to the Drosophila larval CNS induces glial proliferation, and we uncover a gene network controlling this response. It consists of the mutual maintenance between the cell cycle inhibitor Prospero (Pros) and the cell cycle activators Notch and NFΞΊB. Together they maintain glia in the brink of dividing, they enable glial proliferation following injury, and subsequently they exert negative feedback on cell division restoring cell cycle arrest. Pros also promotes glial differentiation, resolving vacuolization, enabling debris clearance and axonal enwrapment. Disruption of this gene network prevents repair and induces tumourigenesis. Using wound area measurements across genotypes and time-lapse recordings we show that when glial proliferation and glial differentiation are abolished, both the size of the glial wound and neuropile vacuolization increase. When glial proliferation and differentiation are enabled, glial wound size decreases and injury-induced apoptosis and vacuolization are prevented. The uncovered gene network promotes regeneration of the glial lesion and neuropile repair. In the unharmed animal, it is most likely a homeostatic mechanism for structural robustness. This gene network may be of relevance to mammalian glia to promote repair upon CNS injury or disease

    Methods to Evaluate Changes in Mitochondrial Structure and Function in Cancer

    Get PDF
    Mitochondria are regulators of key cellular processes, including energy production and redox homeostasis. Mitochondrial dysfunction is associated with various human diseases, including cancer. Importantly, both structural and functional changes can alter mitochondrial function. Morphologic and quantifiable changes in mitochondria can affect their function and contribute to disease. Structural mitochondrial changes include alterations in cristae morphology, mitochondrial DNA integrity and quantity, and dynamics, such as fission and fusion. Functional parameters related to mitochondrial biology include the production of reactive oxygen species, bioenergetic capacity, calcium retention, and membrane potential. Although these parameters can occur independently of one another, changes in mitochondrial structure and function are often interrelated. Thus, evaluating changes in both mitochondrial structure and function is crucial to understanding the molecular events involved in disease onset and progression. This review focuses on the relationship between alterations in mitochondrial structure and function and cancer, with a particular emphasis on gynecologic malignancies. Selecting methods with tractable parameters may be critical to identifying and targeting mitochondria-related therapeutic options. Methods to measure changes in mitochondrial structure and function, with the associated benefits and limitations, are summarized

    A Review and Classification of Approaches for Dealing with Uncertainty in Multi-Criteria Decision Analysis for Healthcare Decisions

    Get PDF
    The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Multi-criteria decision analysis (MCDA) is increasingly used to support decisions in healthcare involving multiple and conflicting criteria. Although uncertainty is usually carefully addressed in health eco-nomic evaluations, whether and how the different sources of uncertainty are dealt with and with what methods in MCDA is less known. The objective of this study is to review how uncertainty can be explicitly taken into account in MCDA and to discuss which approach may be appro-priate for healthcare decision makers. A literature review was conducted in the Scopus and PubMed databases. Two reviewers independently categorized studies according to research areas, the type of MCDA used, and the approach used to quantify uncertainty. Selected full text articles wer

    Molecular pathology of Birt-Hogg-DubΓ© Syndrome

    Get PDF
    Autosomal dominantly inherited mutations in the folliculin (FLCN) gene lead to Birt-Hogg-DubΓ© syndrome (BHD), which is associated with increased risk of kidney cancer. With the aim of better understanding and treating BHD and its associated renal cell carcinoma (RCC) this study analyzes the potential use of tumour growth inhibitors selective for FLCN-defective cells. Fifteen compounds have been initially selected using the COMPARE algorithm from the chemotherapeutic compounds tested in the NCI-60 cell lines panel based on the highest toxicity in the cell lines with low level of FLCN expression. Growth inhibition assays performed in a paired RCC cell lines with and without active FLCN confirmed that seven compounds decreased growth in FLCN-null cells compared with FLCN-wt cells. The greatest inhibitory selectivity was induced by mithramycin in which a 10-fold difference between GI50 values in FLCN negative and positive UOK257 cells. Mithramycin was also shown to be more cytotoxic to FLCN negative cells than to FLCN-positive UOK257 cells by 10 fold (at 200nM), in clonogenic survival assays. Low doses of rapamycin (1 nM) further increased mithramycin's inhibitory selectivity for FLCN mutant UOK cells, encouraging further investigation of mithramycin as a molecularly-targeted therapy for RCC in BHD
    • …
    corecore