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ABSTRACT    

 

Neurotrophin receptors corresponding to vertebrate Trk, p75NTR or Sortilin have not been 

identified in Drosophila, thus it is unknown how neurotrophism may be implemented in 

insects. Two Drosophila neurotrophins, DNT1 and DNT2, have nervous system functions, 

but their receptors are unknown. The Toll receptor superfamily has ancient evolutionary 

origins and a universal function in innate immunity. Here we show that Toll paralogues 

unrelated to the mammalian neurotrophin receptors function as neurotrophin receptors in 

fruit-flies. Toll-6 and Toll-7 are expressed in the central nervous system throughout 

development, and regulate locomotion, motoraxon targeting and neuronal survival. DNT1 and 

2 interact genetically with Toll-6 and 7, bind to Toll-7 and 6 promiscuously, and are 

distributed in vivo in complementary or overlapping domains. We conclude that in fruit-flies, 

Tolls are not only involved in development and immunity but also in neurotrophism, 

revealing an unforeseen relationship between the neurotrophin and Toll protein families. 
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MAIN TEXT    

The Toll receptor superfamily comprising Toll and Toll-like receptors (TLRs) has ancient 

evolutionary origins, arising over 700 million years ago, and is present throughout the 

metazoans1. Toll and TLRs have a universal function in innate immunity and they initiate 

adaptive responses in vertebrates1,2. In humans the ten TLRs are pattern recognition receptors 

that directly bind to microbial antigens and activate pro-inflammatory and co-stimulatory 

responses. Mammalian TLRs were identified by homology to Drosophila Toll. The 

Drosophila genome encodes nine Toll receptors (Toll-1-9) which, except for Toll-9, are 

phylogenetically distinct from the vertebrate TLRs1. Thus, Drosophila Toll-1 to 8 and Toll-9 

together with vertebrate TLRs form two distinct clades 3. Toll-1 functions in developmental 

processes, including the establishment of the embryonic dorso-ventral axis, in axon targeting 

and degeneration and innate immunity1,4, whilst the roles of the remaining Tolls are largely 

unresolved. Previous reports indicated that Toll-7 to Toll-9 have developmental functions but 

no antibacterial immunity functions, although Toll-7 is involved in anti-viral responses 5-9, 

and Toll-6 and Toll-7 are expressed in the CNS10. Unlike the TLRs, Toll-1 does not bind 

microbial products directly. Instead, detection of bacterial molecules by the soluble 

recognition proteins PGRP and GNBP triggers a serine protease cascade11. This leads to the 

cleavage and activation of Spätzle (Spz), an endogenous protein ligand for Toll-112.  

      Spz belongs to the neurotrophin family of growth factors that in vertebrates comprises 

NGF, BDNF, NT3 and NT413,14. Spz is comprised of a signal peptide, an unstructured pro-

domain and an active cystine-knot domain of 13KDa (also known C-106), which dimerises 

binding Toll with 2:2 stoichiometry 13-15. Spz is secreted as a pro-protein, and is cleaved 

extracellularly by the Serine proteases Easter acting in development and Spätzle Processing 
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Enzyme (SPE) in immunity, to release the active cystine-knot13. This mechanism resembles 

the extracellular cleavage of BDNF at the synaptic cleft by the serine protease plasmin (which 

is also involved in the blood-clotting cascade) and which is activated by the presynaptic 

release of plasminogen activating factor (tPA) upon high frequency stimulation16. The 

characteristic neurotrophin cystine-knot, formed by anti-parallel β-sheets held together by 

three intersecting disulphide bonds, can be precisely aligned between the crystal structures of 

Spz and NGF17-19.  

 DNT1 was identified independently as related to BDNF, using vertebrate neurotrophin 

sequences as query to search the Drosophila sequenced genome with bioinformatics tools20. 

DNT1 was found to be spz2, a paralogue of spz 20,21. Structural prediction analysis using 

FUGUE showed that of the spz paralogues, DNT1and DNT2 (spz5)21 are closest to the NT 

superfamily, followed by spz21,20.  

 There is also functional conservation between DNT1, DNT2 and Spz and the 

mammalian neurotrophins in the nervous system20. The vertebrate neurotrophins have 

essential developmental functions in neuronal survival, axon targeting and connectivity, and 

in adult life in learning, memory and cognition16.  During development, DNT1, DNT2 and spz 

are expressed in target cells for CNS neurons, such as the embryonic en-passant midline 

target of interneurons, and the muscles, target of motorneurons20. DNT1 and DNT2 are 

required for neuronal survival, as neuronal apoptosis decreases upon their over-expression in 

the CNS and it increases in the mutants leading to neuronal loss, and apoptotic neurons 

include HB9 and Eve positive neurons20. DNTs are required for motor-axon targeting, as 

interfering with the function of DNT1, DNT2 and Spz causes misrouting, mistargeting and 

sprouting defects in motoraxon terminals20. Thus, DNT1 and DNT2, as well as Spz, are 
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Drosophila neurotrophins based on sequence, structural and functional homology to the 

vertebrate neurotrophins20.  

 There is further cellular and molecular evidence that neurotrophism operates in the 

Drosophila nervous system. During normal Drosophila development many neurons and glial 

cells die 22-24, and ablation or mutation in glial cells results in neuronal death in multiple 

contexts25. Identified Drosophila neurotrophic factors include the homologue of 

Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF), which promotes 

dopaminergic neuron survival in fruit-flies using a non-canonical pathway 26 and Netrin 

which promotes interneuron survival from the en-passant midline target 27. Gliotrophic 

factors of the TGF-α, neuregulin and PVF/PDGF protein families have also been shown to 

maintain glial survival in Drosophila 22,28-30.  

 The mammalian neurotrophins signal through three distinct receptors - p75NTR, Trk and 

Sortilin - and a shared downstream target is the activation of NFκB31-33.  In Drosophila there 

are no canonical homologues of these receptors. The receptors for DNT1 and DNT2 are 

unknown, although an attractive hypothesis is that orphan Tolls fulfil this function in insects. 

Toll receptors are generally thought to function by activating NFκB signalling, which 

regulates the production of antimicrobial peptides in immunity1. Neurotrophins also function 

in immunity34, but these roles have been largely unexplored. TLRs are also present in the 

central nervous system (CNS), primarily in microglia, where they have immunity-related 

functions35. Thus potential relationships between the Toll and neurotrophin families may have 

been overlooked. Here, we ask whether Toll-6 and Toll-7 can function as receptors for DNT1 

and DNT2 during CNS development.  

 

RESULTS 
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Toll-6 and Toll-7 are expressed and required in the CNS 

Toll-6 and Toll-7 are expressed in the embryonic and larval CNS, and adult central brain, as 

seen by mRNA patterns (Fig.1a,b,e,g,i,k). To visualise protein distribution, we used a GFP-

exon trap insertion into Toll-6 (hereafter named Toll-6MIMICGFP), and we raised anti-Toll-7 

antibodies. The Toll-6MIMICGFP insertion is likely to result in a truncated Toll-6 protein and 

thus a mutant allele that could conceivably affect expression from the locus. However, we 

have no evidence that Toll-6 regulates its own expression. Anti-Toll-7 antibodies were found 

to be specific since they failed to detect signal in Toll-7 null mutant embryos and in 

deficiency embryos lacking the Toll-7 locus (Supplementary Fig.1a). In both cases, the 

distribution of GFP in Toll-6MIMICGFP and of anti-Toll-7 in wild-type matched the expression 

patterns of Toll-6 and Toll-7 transcripts, respectively (compare Fig.1a,b,e,g,i,k with 

Fig.1c,d,f,h,j,l). This indicates that the protein patterns most likely represent the endogenous 

distribution of the receptors. In Toll-6MIMICGFP, GFP is mostly cytoplasmic whereas Toll-6 is 

localised to the membrane, therefore GFP does not reveal the subcellular distribution of Toll-

6. Toll-6MIMICGFP and Toll-7 proteins are distributed in the CNS (Fig.1c,d,f,h,j,l), including 

both interneurons and motorneurons (Fig.1c,d), but at this stage we cannot rule out expression 

also in glia. Toll-6MIMICGFP is present in ventral embryonic HB9+ neurons (Fig.2a); in all 

Eve+ motorneurons except RP2 (Fig.1c, Fig.2c,e and Supplementary Fig.2c) and in 

longitudinal interneuron axons (Fig.2e). Toll-7 protein is distributed in ventral HB9+ and 

Lim3+ RP motorneurons (Fig.1d, Fig.2b,d and Supplementary Fig.2d), in interneuron axons 

that cross the midline (Fig.1d) and project along the three FasII+ longitudinal fascicles 

(Figs.1d and 2f), and possibly in motorneuron dendrites or perhaps glia (Fig.2d). Ventral 

HB9+ and Lim3+ motorneurons project along the intersegmental nerve b/d (ISNb/d), which 

targets to muscles 6,7,12,13. The above distributions overlap with those of GAL4 reporters 
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for Toll-636 and Toll-7 (Supplementary Fig.2a,b,e-i), which include expression in the ISNb/d 

axonal terminals (Fig.2g). In the larva, Toll-6MIMICGFP and Toll-7 are distributed along the 

VNC neuropile (Figs.1f,h and 2h), and Toll-6MIMICGFP is detectable in aCC motorneurons 

(Fig.2h and Supplementary Fig.2i). In the adult brain, Toll-6MIMICGFP is distributed in 

dopaminergic neurons (Fig.2i). Toll-6MIMICGFP and Toll-7 are distributed in complementary 

layers of the fan-shaped body and in complementary rings of the ellipsoid body (Fig.2j), the 

sites for the central control of locomotion. Thus, Toll-6 and Toll-7 are distributed in the 

locomotor circuit, including motorneurons, interneurons of the central pattern generator, and 

locomotion centres and dopaminergic neurons in the brain. 

 To investigate the functions of Toll-6 and Toll-7 in the CNS, we generated null mutant 

alleles (Supplementary Fig.3). The embryonic motorneurons are preserved in the larva, thus 

we tracked crawling mutant larvae: most particularly, Toll-7P8/Toll-7P114; Toll-626/Toll-631 

double mutants crawled more slowly than controls (Fig. 3a,b p<0.0001, corrected p<0.001). 

To test whether Toll-6 and Toll-7 have functions in motor-axon targeting, we visualised the 

projections of FasII ISNb/d. Toll-631/Df(3L)XG4, Toll-7P8/Toll-7P114 and Toll-

7114/Df(2R)BSC22 single mutants and Toll-7P8/Toll-7P114; Toll-626/Toll-631 double mutants 

showed deficient targeting and axonal misrouting (Fig. 3c,e χ2 (7)=136.247 p<0.001, 

corrected p<0.001). Over-expression of constitutively active forms of the receptors, Toll6CY 

and Toll7CY, in neurons also caused targeting defects (Fig.3d,e χ2 (7)=136.247 p<0.001, 

corrected p=0.032 and p<0.001, respectively). To test whether Toll-6 and Toll-7 can regulate 

cell survival, we visualised cell death with anti-cleaved-Caspase-3 antibodies and quantified 

the number of apoptotic cells using DeadEasy Caspase software37. Apoptosis increased in 

Toll-626/Toll-631, Toll-626/Df(3L)XG4, Toll-7P8/Toll-7P114 and Toll-7P8/Df(2R)BSC22 mutant 

embryos, showing that Toll-6 and Toll-7 are required for cell survival in the CNS (Fig. 4a-c, 



 8

(b): F(2,70)=5.782 p=0.005, corrected p=0.006 and p=0.015, respectively, and (c): 

F(2,71)=7.010 p=0.002; corrected, p=0.001 and p=0.032, respectively). Over-expression of 

Toll-6CY and Toll-7CY in neurons rescued naturally occurring cell death (Fig. 4d ANOVA 

F(2,68)=4.811 p=0.011, corrected p=0.021, p=0.012, respectively), thus Toll-6 and Toll-7 can 

promote cell survival. The dying cells in the double mutants included HB9+Caspase+ (Fig.4 

e,f,g,h Student t(26)=-2.230: p=0.035) and Eve+Caspase+ EL interneurons (Fig.4i,j χ2 

(1)=1.992, p=0.158, albeit not significant), which normally express Toll-7 and Toll-6 (see 

Fig.2a-f). Not all HB9+ neurons normally express Toll-6 or Toll-7, thus we could not confirm 

that all dying HB9+ neurons necessarily corresponded to Toll-6+ or Toll-7+ neurons. 

However, there was a good correlation between the ventral and central locations of the dying 

HB9+ neurons in the double mutants and the equivalent location of HB9+ Toll-6MIMICGFP and 

HB9+Toll-7+ neurons in normal embryos (compare Fig.4e with Fig.2a, and Fig.4f with 

Fig.2b), indicating that in the mutants the HB9+ dying neurons most likely included Toll-6+ 

and Toll-7+ neurons. We could confirm that since all Eve+ neurons except RP2 were also 

Toll-6MIMICGFP positive, in the mutants apoptosis of Eve+ neurons corresponded to cell death 

of at least Toll-6+ neurons. Apoptosis resulted in neuronal loss as in Toll-7P8/Toll-7P114; Toll-

626/Toll-631 doubles mutants there was a reduction in the number of Eve+ EL interneurons 

(Fig.4k,l χ2 (1)=9.645: p=0.002). Altogether, our data show that Toll-6 and Toll-7 are required 

for locomotion, motor-axon targeting and neuronal survival.  

 

Toll-6 and Toll-7 interact genetically with DNT2 and DNT1 

The observed CNS phenotypes resemble those caused by DNT1 and DNT220, consistent with 

DNTs and Tolls being involved in common developmental processes. We next asked whether 

DNT, Toll-6 and Toll-7 mutants might interact genetically. Single DNT1, DNT2, Toll-6, or 
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Toll-7 mutants are viable. However, DNT1DNT2 double mutants are semi-lethal as progeny 

of a heterozygous stock maintained over the TM6B chromosome at 18°C (Fig. 5a χ2 

(11)=360.277, p<0.001, corrected p<0.001). Similarly, Toll-7;Toll-6 double mutant embryos 

are also semi-lethal at 18°C as progeny of a heterozygous stock over SM6aTM6B (Fig. 5a 

corrected p<0.001). This semi-lethality can be rescued with the expression of two forms of 

activated receptors in cholinergic interneurons, Toll-6ΔLRR, Toll-7ΔLRR and Toll-7CY (Fig. 5b χ2 

(6)=85.028 p<0.001, corrected p<0.001, p=0.003, p<0.001, respectively). Exploiting this 

cold-sensitive semi-lethality, we tested genetic interactions between the DNTs and the Tolls. 

DNT141Toll-626 and Toll-7P114;DNT2e03444 double mutants are semi-lethal under the above 

conditions, whereas DNT2e03444Toll-626 double mutant embryos are viable (Fig. 5c). The 

semi-lethality of DNT141Toll-626 and Toll-7P114;DNT2e03444 double mutants is consistent with 

lack of the receptor from one signalling pathway and the ligand from the other being 

equivalent to losing both ligands or both receptors. The viability of DNT2e03444Toll-626 double 

mutants is consistent with lack of both the receptor and the ligand from the same pathway 

being equivalent but not worse than losing only one of them. The semi-lethality of 

DNT141Toll-626 double mutants can be rescued by the over-expression of Toll-6CY or Toll-7CY 

with Toll7GAL4 (Fig.5c χ2 (5)=653.525 p<0.001, corrected p<0.001, p<0.001 respectively). 

These data suggest that Toll-7 may function downstream of DNT1 and Toll-6 downstream of 

DNT2. DNT141Toll-7P114 double mutants also have reduced viability, suggesting that Toll-7 

may also act downstream of DNT2.  

 We thus asked whether activated forms of Toll-6 and Toll-7 could rescue DNT mutant 

CNS phenotypes. Pan-neuronal expression of Toll-6ΔLRR, Toll-7ΔLRR, Toll-6CY or Toll-7CY 

rescued the semi-lethality of DNT141 DNT2e03444 double mutants (Fig.5d χ2 (10)=401.419 

p<0.001, corrected p<0.001 for all). Over-expression of Toll-7CY in all neurons rescued the 
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apoptosis caused by loss of DNT1 function, and over-expression of Toll-6CY in all neurons 

rescued the apoptosis caused by loss of DNT2 function (Fig. 5e,f  (e) F(2,69)=10.479 p<0.001 

and (f) F(2,63)=5.143 p=0.009, and corrected p<0.01, p=0.051, p=0.011, p=0.017, 

respectively). Altogether, these data indicate that Toll-7 and Toll-6 most likely function as 

receptors for DNT1 and DNT2, respectively, although these interactions may be promiscuous. 

 

Toll-6 and 7 function upstream of NFκB and bind DNT1 and 2 

We next asked whether potential DNT1/2 and Toll-6/7 interactions could induce NFκB 

signalling. Pan-neuronal over-expression of activated Toll10b, which activates NFκB 

homologues Dorsal and Dorsal-related immunity factor (Dif)4, rescued the semi-lethality of 

spz2 mutants, and this rescue was replicated with the over-expression of activated Toll-6CY and 

Toll-7CY in neurons (Fig. 5g χ2 (7)=99.272 p<0.001, corrected p<0.001, p=0.018, p<0.001, 

respectively). S2 cells transfected with activated Toll-6CY and Toll-7CY resulted in the 

activation, upon induction, of snail-luciferase, a reporter for Dorsal, and drosomycin-

luciferase, reporter for Dif (Supplementary Fig.4a,b (a) F(5,24)=27.165 p<0.001, corrected 

p=0.054, p=0.000084, respectively; (b) F(5,24)=6.574 p=0.001 corrected p=0.01, p=0.018, 

respectively). Furthermore, when S2 cells transfected with Toll-6HA or Toll-7HA, were 

stimulated with purified DNT2 this triggered a drosomycin-luciferase readout indicative of 

Dif signalling (Supplementary Fig.4c,d F(5,27)=16.788 p<0.001, corrected p=0.034, p=0.09 

and Supplementary Fig.5a-d). However, in vivo, over-expression of Toll-6CY and Toll-7CY did 

not induce drosomycin-GFP expression (Supplementary Fig.4e), consistent with previous 

reports7,8. Nevertheless, activated Toll-6CY and Toll-7CY induced increased levels of Dorsal, 

Dif and Cactus proteins (Supplementary Fig.4f Dorsal: F(2,9)=10.382, p=0.005, corrected 

p=0.003, p=0.085, respectively; Dif: F(2,9)=12.898, p=0.005, corrected p=0.002, p=0.006, 
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respectively; Cactus: F(2,4.14)=28.233, p=0.004, corrected p=0.038, p=0.011, respectively ). 

Although we do not provide mechanistic evidence of whether Toll-6 and Toll-7 signalling 

involve the canonical Toll pathway or not, our data indicate that Toll-6 and Toll-7 function 

upstream of NFκB. 

 In the light of the genetic evidence that Toll-6 and Toll-7 are receptors for Drosophila 

neurotrophins, we next asked whether DNT1 and DNT2 could bind Toll-7 and Toll-6. To test 

if they can interact in vitro, we purified secreted forms of the receptors comprising only the 

extracellular domain, Toll-6-ECDHis and Toll-7-ECDHis (Fig.6a,b and Supplementary 

Fig.5e) and cleaved baculovirus-produced DNT2-CK-His (Fig.6a,b,c Supplementary Fig.5a-

d), and mixed them to allow formation of complexes which were run in a native gel 

(Fig.6d,e). In native gels, protein mobility does not depend on molecular weight but on 

conformation and charge relative to the pH of the buffer. At the pH of our buffers both 

proteins were negatively charged, but the pI of DNT2CK was close to the buffer pH and its 

mobility was limited, whereas Toll-6/7ECDs migrated further as their pIs differed from the 

buffer pH. Adding DNT2-CK shifted the running of Toll-6/7ECDs and new bands appeared 

at the top of gel, relative to controls (Fig.6d,e). This indicates that DNT2 interacts with both 

Toll-6 and Toll-7.  

 
 In S2 cell culture, co-transfection with full-length DNT1-V5 and full-length Toll-7HA, 

and DNT2-V5 and Toll-6HA (Fig.6f controls), revealed interactions between DNT1 and Toll-7 

and DNT2 and Toll-6 in ELISA assays (Fig.6g top 6 vs 2: t(4)=-10.485 p<0.001; 7 vs 3: 

t(4)=-7.619 p=0.002; bottom 7 vs 4: t(4)=-5.574 p=0.005; 6 vs 5: t(4)=-13.504 p<0.001). This 

interaction was also demonstrated by co-immunoprecipitation of the ligands and receptors 

expressed in co-transfected S2 cells. Anti-HA precipitated full-length Toll-6HA and Toll-

7HA receptors, and only in receptor-transfected cells (Fig.6h control). Whereas no ligands 
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were detected after immunoprecipitation from controls that had not been transfected with 

receptors, antibodies to the HA tagged forms of Toll-6 and Toll-7 co-purified DNT2V5 and 

DNT1V5, respectively, from co-transfected cells (Fig.6h). There is some non-specific binding 

of DNT1 in the no-receptor control, but this is recurrently at lower levels than in the co-

transfected cells (Fig.6h). In reverse co-IP, anti-V5 precipitated full-length and cleaved V5 

tagged DNT2 and DNT1, and only in ligand-transfected cells (Fig.6i control). By contrast, no 

receptors were detected after immunoprecipitation from control S2 cells that had not been 

transfected with ligands, whereas antibodies specific for the V5 tagged forms of DNT1 and 

DNT2 co-purified Toll-7HA and Toll-6HA, respectively, from co-transfected cells (Fig.6i). 

Together, these data show that DNT1/2 and full-length transmembrane Toll-6/7 can be co-

immunoprecipitated from S2 cells. In vivo, transgenic flies over-expressing both DNT1-

Cysknot-FLAG and full-length Toll-7HA in the retina (with GMRGAL4) were used to 

immunoprecipitate DNT1 bound to Toll-7 (Fig.6j).  

 Together, these data demonstrate that DNT1 binds Toll-7 and DNT2 binds 

promiscuously Toll-6 and Toll-7. 

 Consistent with their functions as ligands for Toll-7 and Toll-6 in interneurons and 

motorneurons, DNT1 and DNT2 are expressed in embryonic CNS midline and muscle 20. 

Anti-DNT1-VRY antibodies were found to be specific as they failed to reveal signal in 

DNT141 null mutant embryos (Supplementary Fig.1b). In normal embryos, DNT1 protein was 

detectable at the midline (Fig.7a), target of interneurons, and in high levels in muscles 13,12 

and lower in muscles 6,7 - the targets of ISNb/d axons (Fig.7b). We were not able to generate 

a DNT2 null allele, thus we could not confirm that anti-DNT2-KRL signal is absent in 

mutants. However, anti-DNT2-KRL detected ectopic DNT2 distribution in embryos, larval 

and adult brains (Supplementary Fig.1c-e), suggesting that it detects endogenous DNT2 
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protein in vivo. In normal larvae, anti-DNT2 revealed punctae along the FasII+ interneuron 

axons (Fig.7c), Toll-6(D42)GAL4>DsRed (Fig.7d) and Toll-6MIMICGFP+ (Fig.7e) axons. In 

adult brains, DNT1 overlies Toll-7 in fan-shaped body layers (Fig.7f), whereas DNT2 and 

Toll-6MIMICGFP are distributed in complementary layers (Fig.7f), compatible with the non-

autonomous function of DNT2. Thus, the distribution of DNT1 and DNT2 supports their 

functioning as Toll-7 and Toll-6 ligands in vivo.   

 

DISCUSSION 

We have found that neurotrophic functions in the fruit-fly are carried out by Toll-7 and 6 

binding DNT1 and 2, respectively. Toll-6 and Toll-7 are expressed in the locomotor circuit, 

including motorneurons and interneurons of the embryonic central pattern generator and 

locomotion centres of the adult central brain. By removing Toll-6 and Toll-7 function in 

mutants or adding them in excess, we have shown that Toll-6 and Toll-7 are required for 

normal locomotion and motoraxon targeting, and to maintain neuronal survival. In the 

absence of Toll-6 and Toll-7 function at least some of the dying cells are HB9+ and Eve+ EL 

interneurons that normally express the receptors. Using genetic interaction analysis, we have 

shown that Toll-6 and 7 and DNT1 and 2 function together in vivo. Using biochemical 

approaches in vitro, in cell culture and in vivo we have shown that Toll-6 and Toll-7 directly 

bind DNT2 and DNT1, respectively. Finally, the relative in vivo protein distribution patterns 

of the ligands and the receptors are consistent with their shared functions. Most importantly, 

we have shown that Toll receptors underlie neurotrophism in fruit-flies, which is therefore 

implemented using a different molecular mechanism from the canonical vertebrate 

mechanism involving p75NTR, Trks and Sortilin. 
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 Our data show that Toll-6 and Toll-7 have neurotrophic functions in the Drosophila 

CNS matching those of DNT1 and DNT220. As in the mammalian neurotrophin system, these 

functions are pleiotropic. Mammalian neurotrophin ligands and receptors have functions 

ranging from maintaining neuronal survival, to axon targeting, dendritic arborisation and 

synaptic transmission, which vary with context, cell type and time16,38,39. For instance, 

whereas vertebrate neurotrophins and Trk receptors maintain neuronal survival in the 

peripheral nervous system, they do not have a prominent role in maintaining motorneuron 

survival and instead have functions at the neuro-muscular junction in synaptogenesis and 

synaptic plasticity40. Our data show that Toll-6 and Toll-7 also have pleiotropic functions, 

maintaining predominantly interneuron survival and regulating motor-axon targeting. 

 Our data indicate that Toll-7/DNT1 and Toll-6/DNT2 are the most likely ligand-

receptor pairs, but there appears to be promiscuity in ligand binding, since at least DNT2 can 

bind both receptors. This may also be the case for DNT1, but pure mature DNT1 protein 

could not be obtained using the baculovirus system, restricting the tests that could be carried 

out. Such promiscuity may account for the redundancy between Toll-6 and 7 observed in 

genetic and functional tests (e.g. compromised locomotion and viability in the double mutants 

only). It may indicate that in vivo the binding partners might be determined by the relative 

temporal and spatial distribution patterns of the proteins. Alternatively, it is also conceivable 

that DNT1 and DNT2 have distinct functions and may bind each receptor according to 

functional requirements. DNT1 and DNT2 have distinct biochemical properties: whereas 

DNT2 is consistently secreted from S2 cells as a mature, cleaved form consisting of the 

cystine-knot domain, DNT1 is secreted both as full-length and mature forms, and as products 

of cleavage within the disordered pro-domain. The protease that might cleave DNT1 in vivo 

is unknown, but these properties are akin to the intracellular cleavage of NGF for DNT2, and 
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the extracellular cleavage of BDNF16 for DNT1. In either case, the observed promiscuity is 

reminiscent of the binding of all mammalian neurotrophins to a common p75NTR receptor. 

 Although vertebrate neurotrophin receptors are structurally and functionally distinct 

from the Tolls, both regulate NFκB1,13,32,33,41. NFκB is also one of the transcription factors 

that activates the innate immune response downstream of the TLRs, and it also has extensive 

and highly conserved functions in neurons. Neuronal NFκB functions to control gene 

expression as a potent pro-survival factor, it controls neurite extension, it also has non-nuclear 

synaptic functions including the clustering of glutamate receptors, and it underlies synaptic 

plasticity during learning and memory, from crustaceans to mammals31,32,41-43. In humans, 

alterations in NFκB function lead to psychiatric disorders41. Previous reports have shown that 

Toll-6 and Toll-7 do not activate Drosomycin upon immune challenge, indicating that Toll-6 

and Toll-7 do not have innate immunity functions and do not activate NFκB-Dif in cell types 

involved in immunity 7,8. In future work we plan to elucidate the signalling mechanism 

downstream of Toll-6 and Toll-7 in the CNS and in particular to determine whether it uses 

downstream signal transducers such as dMyD88 that are required for the immune and 

developmental functions of Toll-1. In this regard it is interesting to note that the mammalian 

TLR-8 is required for neurite extension in the neonatal brain but this activity is not MyD88 

dependent44. Thus, whilst our data do not confirm or refute whether Toll-6 and Toll-7 can 

signal through the canonical Toll signalling pathway, they do show that Toll-6 and Toll-7 

function upstream of NFκB. This conclusion is supported by several observations reported 

here. First, in cell culture, activated forms of Toll-6 and Toll-7 and stimulation with DNT 

ligands can induce NFκB signalling via Dorsal and Dif. Second, in vivo, over-expression of 

activated Toll-6CY and Toll-7CY in retinal photoreceptor neurons results in the elevation of 

Dorsal, Dif and Cactus proteins, as was previously reported for Toll45. Third, in vivo, over-



 16

expression in neurons of activated Toll-6CY and Toll-7CY rescues, like activated Toll10b, the 

semi-lethality of spz2 mutants; and conversely, over-expression of activated Toll10b in neurons 

rescues the semi-lethality of DNT1 DNT2 double mutants. Our data also show that signalling 

by Toll-6 and Toll-7 differs in at least some respects from that mediated by Spz-Toll. For 

example, in cell culture the activation of NFκB signalling by Toll-6 and Toll-7 was not as 

strong as that reported by others to be induced by Toll7,8; and in vivo genetic rescues revealed 

a specific and stronger relationship between Toll-6 and 7 and DNT1 and 2, compared to Toll. 

Understanding the molecular mechanisms of Toll-6 and Toll-7 signalling that underlie the 

developmental programmes that they promote is a key objective of future research. 

 Intriguingly, NFκB, p75NTR and Toll receptors are all evolutionarily very ancient 

molecules, present also in cnidarians (e.g. Nematostella), thus they evolved long before the 

common ancestor of flies and humans and since the origin of the nervous and immune 

systems1,46. Interestingly, the Toll homologue in the worm C. elegans is expressed in neurons 

and can implement an immune function via a behavioural response of pathogen avoidance47. 

p75NTR is a member of the TNFR superfamily, which is closer to the Tolls than to the Trks48. 

Toll receptors resemble p75NTR intracellularly, through their ability to activate a downstream 

signalling pathway resulting in the activation of NFκB, and Trk receptors in the extracellular 

ligand-binding module, with a combination of Leucin-rich (LRR) and Cys repeats48. Trk 

receptors, with an intracellular tyrosine kinase domain, emerged later in evolution49. Although 

Toll receptors are evolutionarily conserved, at least in the innate immunity context they are 

not activated by the same ligands in flies and humans1. This raises important questions: if in 

Drosophila the Trk receptors were lost and Tolls are the only neurotrophic receptors, is this a 

key difference that underlies the distinct brain types and behaviours in flies and humans? In 

the course of evolution, did the Tolls become specialised for immunity functions in 



 17

vertebrates? Or is the relationship uncovered here between the neurotrophin-ligand and Toll-

receptor superfamilies an ancient mechanism of nervous system formation? It is interesting to 

note that in mammals TLRs also have nervous system functions including in neurogenesis, 

neurite growth, plasticity and behaviour, but the endogenous ligands in the mammalian CNS 

are unknown50. A key objective of future research will be to investigate whether the 

neurotrophin and TLR protein families interact in the mammalian brain, particularly in the 

context of learning, memory, and neurodegenerative and neuroinflammatory diseases.  

 

Supplementary Information is linked to the online version of the paper. 
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FIGURE LEGENDS  

 

Fig.1 Toll-6 and Toll-7 are expressed in the CNS through all stages. In situ 

hybridisations showing transcripts for Toll-6 and Toll-7 in: (a,b) stage 13, 15 and 17 embryos; 

(e,g) larval optic lobes, central brain and ventral nerve cords; (i,k) adult brain in central 

complex (arrows). (c,d,f,h,j,l)  Distribution of GFP in Toll6MIMICGFP and anti-Toll7 matches 

that of the transcripts. (c) Note GFP signal in distinct neuronal types (arrows); (d) Note 

motoraxons exiting the CNS (first and second image, white arrows), motorneuron cell bodies 

(yellow arrowheads), axons crossing the midline (third image, arrows), and along three 

interneuron fascicles (fifth image, arrows), and in thickenings that might correspond to 

dendrites or glia (yellow arrowhead). (i,k) Note signal in and around fan shaped body. EL, 

U/CQs: Eve neurons. Anterior is up. Scale bar in: (a,c) 10 μm; (f,h,j,l) 50 μm. 

 

Fig. 2 Identification of Toll-6 and Toll-7 cells in the locomotor circuit. (a,c,e) Anti-GFP 

in Toll6MIMICGFP embryos is distributed in ventral lateral nerve cord HB9+ neurons (a), Eve+ 

EL interneurons and all Eve+ motorneurons except RP2 (c,e, arrows, for RP2s see 

Supplementary Fig.2c). IN=interneurons, arrowheads pointing at longitudinal connectives. 

(b,d,f) Toll-7 protein is localised to ventral lateral and medial HB9+ neurons (b, arrows), 
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Lim3GAL4>myrRFP+ RP motorneurons (d, arrows) and possibly dendrites (pink arrow) and 

FasII+ interneuron fascicles (f, arrows). (g) Toll-6GAL4 (D42)>10xmyr-tdTomato and Toll-

7GAL4>GAPGFP reveal ISNd/b terminals (compare to Lim3GAL4>myrRFP). (h) 

Toll6MIMICGFP and Toll-7 are present in the larval VNC neuropile (arrows pint at axons) and at 

least Toll6MIMICGFP in motorneurons. (i) Toll6MIMICGFP colocalises with the dopamine precursor 

Tyrosine Hydroxylase (TH) in most dopaminergic neurons. (j) Toll6MIMICGFP and Toll-7 are 

distributed in distinct layers of the fan-shaped body (fsb, arrows) and rings of the ellipsoid 

body (eb, arrows). Scale bars: (a-g) 10μm, (h-j) 50μm. 

 

Fig. 3 Toll-6 and Toll-7 are required for larval locomotion and motor-axon targeting. 

(a) Trajectories of larvae crawling for 400 frames per larva, n=50 larvae per genotype . (b) 

Toll-7 Toll-6 double mutant larvae crawl more slowly.  Kruskal-Wallis 814: p<0.0001, and 

Dunn’s test for pair-wise comparisons, asterisks refer to double mutants vs. yw controls 

(Dunn=4474), n=50 larvae and 19950 frames per genotype. (c-e) The incidence of FasII+ 

motoraxon misrouting in 1 or more projections, and loss of two or more projections, per 

hemisegment increase in (c,e) stage 17 mutant embryos and (d,e) embryos over-expressing 

activated forms of Toll-6 or Toll-7 in all neurons (elavGAL4>Toll-6CY;Toll-6CY and Toll-

7GAL4;elavGAL4>Toll-7CY). Scale bar: 10 μm. (e) Chi-Square χ2 (7)=136.247 p<0.001, 

pair-wise comparisons to yw Chi-square with Bonferroni correction, n=169-465 

hemisegments per genotype. *p<0.05; ** p<0.01; ***p<0.001. For further details see 

Supplementary Table 3. 

 

Fig. 4 Toll-6 and Toll-7 maintain neuronal survival. (a) Embryonic VNCs labelled with 

anti-cleaved-Caspase-3. (b,c) Apoptosis increases in Toll-7 and Toll-6 mutant embryos, as 
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quantified with DeadEasy software: (b) One Way ANOVA F(2,70)=5.782: p=0.005, post-hoc 

Dunnett p=0.006, p=0.015, respectively, n=19-28 embryos per genotype; (c) One Way 

ANOVA F(2,71)=7.010 p=0.002, post-hoc Dunnett p=0.001, p=0.032, respectively, n=21-31 

embryos. (d) Pan-neuronal over-expression of activated Toll-6 and Toll-7 rescues naturally 

occurring cell death in the CNS, One Way ANOVA F(2,68)=4.811 p=0.011, post-hoc 

Dunnett p=0.021, p=0.012, respectively, n=22-27 embryos. (b-d) Asterisks refer to pair-wise 

comparisons to yw, post-hoc Dunnett tests. (e-h) Apoptotic Caspase+HB9+ cells in 

Toll7P8/Toll7P114; Toll626/Toll631 double mutant embryos in locations corresponding to 

neurons that normally express (e) Toll-6 or (f) Toll-7, (g) high magnification view and (h) 

quantification, unpaired Student t-test (1)=-2.230, p=0.035, n=9-19 embryos. (i,j) In 

Toll7P8/Toll7P114; Toll626/Toll631 double mutant embryos, more EL clusters have Eve+ 

Caspase+ apoptotic interneurons  (j, albeit not significant χ2(1)=1.992 p=0.158, n=109-138 

EL clusters). (k,l) Apoptosis leads to loss of Eve+ EL interneurons in the double mutants, as 

more EL clusters have fewer neurons than the normal 8-10 per cluster (arrows in k), Chi-

square χ2(1)=9.645 p=0.002, n=22-260 EL clusters. *p<0.05; **p<0.01;***p<0.001. All 

stage 17 embryos. Scale bars: (a) 20 μm; (e, f, k) 10 μm; (g, i) 5 μm. For further details see 

Supplementary Table 3. 

 

Fig. 5 Toll-6 and Toll-7 interact genetically with DNT2 and DNT1. Survival index for 

homozygous yw;;+/+ controls bred from an outcross to TM6B at 18°C is 1. (a) Single 

homozygous mutants lacking one DNT or Toll-6 or Toll-7 are viable, whereas homozygous 

double mutants lacking DNT1 and DNT2 or Toll-6 and Toll-7 are semi-lethal if bred at 18°C 

as progeny of a stock maintained over a TM6B or SM6aTM6B balancer. Chi-square 

χ2(11)=360.277 p<0.001, n=126-872 pupae per genotype. (b) The semi-lethality of Toll-
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7P8;Toll-626 double mutants can be rescued by over-expressing the activated receptors in 

cholinergic neurons. χ2(6)=85.028 p<0.001, n=102-467 pupae. (c) Homozygous double 

mutants lacking one DNT and one Toll recapitulate the semi-lethality of DNT141DNT2e03444 

and Toll-7P8;Toll-626 double mutants, and the lethality DNT1 Toll-6 double mutants can be 

rescued by expressing the activated receptors with Toll-7GAL4. χ2(5)=653.525 p<0.001, 

n=72-991. (d) The semi-lethality of DNT141DNT2e03444 double mutants can be rescued by 

expressing the activated Toll-6, Toll-7 or Toll receptors in neurons. χ2(10)=401.419 p<0.001, 

n=83-1461 pupae. (e,f) Quantification of anti-cleaved-Caspase-3 labelling in embryonic 

VNCs: apoptosis increase of DNT55 and DNT2e03444/Df6092 mutant embryos (e, One Way 

ANOVA F(2,69)=10.479 p<0.001, post-hoc Dunnett p<0.01, p=0.051) is rescued with the 

over-expression of activated Toll-7CY and Toll-6CY  in all neurons (f, Welch ANOVA 

F(2,63)=5.143 p=0.009, post-hoc Dunnett p=0.011, p=0.017). (e,f) Asterisks refer to pair-

wise comparisons to yw, post-hoc Dunnett tests. (g) Pan-neuronal over-expression of 

activated Toll10b, Toll-6CY and Toll-7CY rescues the semi-lethality of spz2 mutants, 

χ2(7)=99.272 p<0.001. ***p<0.001; **p<0.01; *p<0.05. (a-d,g) Asterisks refer to Chi square 

comparisons to fixed controls with Bonferroni corrections. For detailed genotypes and further 

statistics details, see Supplementary Tables 1 and 3.  

 

Fig. 6 In vitro, cell culture and in vivo evidence that Toll-7 and Toll-6 bind DNT1 and 

DNT2. (a) Diagrams illustrating the constructs encoding tagged proteins. (b) Coomassie 

stainings showing: Left: secreted Toll-6/7ECD purified from S2 cell conditioned medium, for 

mass spectrometric sequence evidence see Supplementary Fig.5e. Centre: DNT2 is purified 

from Baculovirus as a secreted cleaved cystine-knot (CK) dimer. Right: DNT1 is purified 

from S2 conditioned medium as cleaved 45kDa cystine-knot plus terminal extension 
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(CK+CTD, lower arrow), also in full-length (FL) form and cleavage products (upper arrow), 

and DNT2 is purified from S2 conditioned medium only as cleaved cystine-knot. (c) The 

mass of DNT2 purified by reverse phase chromatography determined by MALDI TOF mass 

spectrometry demonstrates that DNT2 is secreted as a cleaved cystine-knot. The observed 

mass of the DNT2 dimer was 26225.82±0.62 Da, matching exactly the expected mass. DNT2 

is cleaved at a trypsin-like cleavage site. In contrast to Spz, but like vertebrate NGF, DNT2 is 

processed during biosynthesis. (d) Native gel showing complexes of purified DNT2CK with 

purified Toll-6ECD, Toll-7ECD or both Toll-6ECD+Toll-7ECD: the shift in the Toll-6/7 

band when mixed with DNT2 indicates that these proteins interact (western blot, anti-His). (e) 

Predicted mobility of native Toll-6ECDHisFLAG, Toll-7ECDHisFLAG and DNT2CKHis at 

pH=8.8. At this pH the charge of DNT2 is very close to 0, whereas Toll-6 and Toll-7 are 

negatively charged. (f) Co-transfection S2 cell lysate controls for ELISA and co-IP 

experiments showing proteins expressed in each experiment in (g,h,i). (g) ELISA assays using 

co-transfected S2 cells revealed a significant difference in absorbance comparing single and 

co-transfected S2 cell lysates. Unpaired t-tests: top 6 vs 2: t(4)=-10.485 p<0.001; 7 vs 3: 

t(4)=-7.619 p=0.002; bottom 7 vs 4: t(4)=-5.574 p=0.005, 6 vs 5: t(4)=-13.504 p<0.001, n=3 

repeats. (h,i) Co-immunoprecipitation of full-length Toll-7HA and DNT1V5, and full-length 

Toll-6HA and DNT2V5, from co-transfected S2 cells. (h) Precipitation of receptors with anti-

HA brings down bound ligands detected with anti-V5; (i) precipitation of ligands with anti-

V5 brings down bound receptors detected with anti-HA. (j) In vivo co-immunoprecitation 

from transgenic flies over-expressing full-length Toll-7HA and DNT1-FLAG in the retina with 

GMRGAL4. Two examples are shown, using rabbit (left) or mouse (right) anti-FLAG 

antibodies to precipitate DNT1, bringing down bound receptor detected with anti-HA. 
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***p<0.001,  **p<0.01, *p<0.05. (h, i, j) Co-IP blots have been cropped for clarity; full-

length blots are shown in Supplementary Figs.6-9. 

 

Fig. 7. The relative distributions of DNT1, 2 and Toll-7, 6, respectively, in vivo are 

consistent with their functions are ligand-receptor pairs. (a) Anti-DNT1 reveals DNT1 

protein distributed in the embryonic CNS midline (stage 15) and (b) at high levels in muscle 

13,12, in lower levels in muscles 6,7 and possibly others too (stage 17). (c,d) Anti-DNT2 

reveals punctate signal along larval CNS axons revealed with (c) FasII+, (d) DsRed+ in Toll-

6GAL4(D42)>myrRFP and (e) Toll-6MIMICGFP. (f) Anti-DNT1 and anti-Toll-7 co-localise in 

fan-shaped body layers. Anti-DNT2 and anti-GFP in Toll-6MIMICGFP are distributed in 

complementary fan-shaped body layers. Anterior is up, scale bar: (a,d,e) 10μm, (c,f) 50μm.  

 

Supplementary Fig.1  Specificity of Toll-7, DNT1 and DNT2 antibodies. (a) Anti-

Toll7-AAQ labels embryonic stage 17 CNS axonal fascicles in wild-type and heterozygous 

embryos bearing a CyOlacZ balancer chromosome. No signal was detected in 

Toll7P8/Toll7P114 null mutant or deficiency Df(3L)BSC22 homozygous embryos (Anti-βgal 

identifies embryos bearing a balancer chromosome), showing that anti-Toll-7-AAQ 

specifically detects the Toll-7 antigen. (b) Anti-DNT1-VRY revealed signal at the CNS 

midline in stage 15 wild-type embryos (top left), but not in DNT141 homozygous null mutant 

embryos (top right), and in high levels in longitudinal muscle 13,12 and lower levels in 

muscle 6,7, as well as in oblique muscles in stage 17 wild-type embryos (bottom left). This 

strong muscle signal was absent in DNT141 homozygous null mutant embryos, where only 

lower level background signal was observed (bottom right), demonstrating that anti-DNT1-

VRY specifically detects the DNT1 antigen. (c) Anti-DNT2-KRL revealed some cells in the 
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larval central brain, as well as vesicular, spotty signal in what appeared to be central brain 

axonal patterns. It can detect ectopic cells (arrows) upon over-expression with the pdfGAL4 

driver (pdfGAL4>DNT2CK). (d) Anti-DNT2-KRL revealed high diffuse signal in the gut and 

spotty signal outside the gut. This vesicular pattern could also be detected in ectopic 

epidermal stripes upon over-expression with engrailedGAL4 (enGAL4>DNT2CK) in stage 10 

embryos (arrowheads), indicating that this spotty pattern is specific to the DNT2 antigen. (e) 

Anti-DNT2-KRL also detected diffuse signal upon ectopic expression of DNT2CK with 

GMRGAL4 in the terminals of retinal axons in the medulla of adult optic lobes (bottom 

image, compare with top wild-type control). Scale bars: (a,b,e) 10 μm; (c,d) 50 μm. 

 

Supplementary Fig. 2.  Distribution of Toll-6 and Toll-7GAL4 reporters in 

embryonic and larval VNCs and adult brains, and further identified cells. (a,b) Anti-GFP 

distribution in (a) Toll-6GAL4(D42) and (b) Toll-7GAL4 driving UASGAPGFP expression in 

stage 14-17 embryos. The GAL4 patterns are consistent with, and on the whole include, the 

transcript patterns (see Fig.1a,b). The D42 reporter misses some of the cells expressing Toll-6, 

and Toll-7GAL4 may include more cells. (c) Anti-GFP in Toll-6MIMICGFP co-localises with Eve 

in motor-neurons, including aCC and U/CQs but not in RP2. (d) Co-localisation of anti-Toll-7 

and anti-DsRed in stage 13 HB9GAL4>10xmyrtdTomato embryos, in motor-neurons and 

motor-axons exiting the CNS (arrows). (e,g) The patterns revealed by Toll-

6GAL4(D42)>GAPGFP and Toll-7GAL4>GAPGFP in the larval VNC are consistent with, 

although not identical to, the distribution of Toll-6 and Toll-7 transcripts and anti-GFP in Toll-

6MIMICGFP and anti-Toll-7, respectively. (f) The pattern revealed by Toll-6GAL4(D42)> 

GAPGFP in the adult brain does not coincide with that of Toll-6MIMICGFP(see Fig.1j and 

Fig.2j). (h) Toll-7GAL4>GAPGFP reveals the fan shaped body, like anti-Toll-7, but in more 



 25

cells that can be detected with anti-Toll-7 (see Fig.1j). (i) Comparison of D42 (Toll-6GAL4) – 

a widely used line as a motor-neuron reporter – and Toll-6MIMICGFP patterns in 

UASDsRed/+;;D42/Toll-6GFPMi02127 larvae revelaed with anti-GFP and anti-DsRed. 

Dorsally, D42 drives expression in RP2 motorneurons lacking Toll-6MIMICGFP, but DsRed and 

GFP co-localise in aCC motor-neurons (arrows). In an intermediate focal plane, DsRed and 

Toll-6MIMICGFP co-localise in thoracic commissural axons. They overlap in the somas of some 

neurons, but they are also both present in non-overlapping cells. In a ventral focal plane, 

DsRed and Toll-6MIMICGFP co-localise in some cell bodies, but not in others. Anterior is up. 

Scale bars: (a-d) 10 μm. (e-i) 50 μm. 

 

Supplementary Fig. 3.  Null mutant alleles of Toll-6 and Toll-7. Null mutant alleles 

were generated by P-element imprecise excision, which resulted in deletions spanning the 

start codon ATG. Deletions are indicated by the gaps in the grey lines. Coding regions are 

indicated in blue, 5’ and 3’ UTRs are indicated in grey. Both Toll-6 and Toll-7 are intronless 

genes. 

 

Supplementary Fig.4  Toll-6 and Toll-7 function upstream of NFκB. (a) 

Constitutively active Toll-6 and Toll-7 induce Dorsal signalling, as detected with the snail-

luciferase reporter (One Way ANOVA: F(1,24)=27.165 p<0.001, multiple comparisons to 

control: t-test with Bonferroni correction for UAS-Toll-7CY t(8)=-8.051 p=0.000084) n≥4 

repeats, and (b) Dif signalling, as detected with the drosomycin-luciferase reporter (One Way 

ANOVA: F(5,24)=6.574 p=0.001, multiple comparisons to control t-test with Bonferroni 

correction: p=0.01, p=0.018, respectively, n≥4 repeats). Toll-6 and Toll-7 expression was 

induced with CuSO4. (c) Full length Toll-6-HA and Toll-7-HA localised to the membrane, 
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nuclei labelled with DAPI. (d) Baculovirus produced mature DNT2 activates Dif signalling in 

cells transfected with full length Toll-6HA or Toll-7HA, as revealed by the drosomycin-

luciferase reporter. Welch ANOVA F(5,27)=16.788 p<0.001, multiple comparisons to 

control, t-test with Bonferroni correction p=0.034 for Toll-6, n≥5 repeats. Error bars in (a,b,d) 

are mean ± standard error of the mean. (e) Over-expression of activated Toll6CY and Toll7CY 

receptors with Toll7GAL4 did not upregulate GFP levels in the gut or CNS driven by 

drosomycin-GFP, compared to controls, indicating that Toll-6 and Toll-7 do not activate Dif 

signaling in vivo (DrosGFP = drosomycin-GFP reporter for Dif signalling). (f) Over-

expression of activated Toll-6CY and Toll-7CY in the retina of the adult flies using GMRGAL4 

results in the upregulation of Dorsal (One Way ANOVA F(2,9)=10.382 p=0.005, post-hoc 

Dunnett p=0.003, p=0.085, respectively, n=4 repeats), Dif (One Way ANOVA F(2,9)=12.898 

p=0.002, post-hoc Dunnett p=0.002, p=0.006 respectively, n=4 repeats) and Cactus (Welch 

ANOVA F(2,4.144)=28.233 p=0.004, post-hoc Games-Howell p=0.038, p=0.011, 

respectively, n=4 repeats) protein levels. Western blots using anti-Dorsal, anti-Dif and anti-

Cactus, and signal quantification normalized over protein levels in the Ponceau stained 

membrane. Error bars are mean ± standard error of the mean. ***p<0.001,  **p<0.01, 

*p<0.05. 

 

Supplementary Fig.5  Production and purification of DNT2, Toll-6ECD and Toll-

7ECD proteins. (a-d) Production of DNT2 using the Baculovirus expression system. (a) 

Baculovirus infection titer: optimum conditions were given by a multiplicity of infection 

(MOI) of 10 and four days culture.  DNT2 produced from Baculovirus is present as a full-

length form (FL), but it cleaves spontaneously releasing the cystine-knot domain (CK). (b) 

Coomassie stained SDS-Page gel following size exclusion chromatography purification of 
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DNT2. All the DNT2 fractions elute together under native conditions. (c) DNT2 after 

purification by Ni-NTA affinity and size exclusion chromatography yields two proteins,  

Edman (N-terminal) sequencing of these fractions are shown in (d). These results indicate that 

the pro-domain remains associated with the cysknot after cleavage. The N-terminal sequences 

are found in DNT2 (yellow) within the pro-domain (28KDa fragment) and at the start of the 

cystine-knot domain (13KDa fragment). The conserved cysteines in the cystine-knot are 

indicated in red; the arrow indicates the cleavage site where DNT2 spontaneously cleaves to 

release the active, mature cystine-knot. MALDI-TOF analysis of purified DNT2 is shown in 

Fig. 6c. (e) Secreted Toll-6ECD and Toll-7ECD were purified from S2 cell conditioned 

medium. Tryptic peptide mass fingerprinting of Toll-6 and Toll-7. Yellow highlighting 

indicates tryptic peptides identified, cyan the signal peptide, red the His tag and green the 

FLAG tag.  

 

Supplementary Fig.6  Full-length blot for Fig.6h Co-IP DNT1 Toll-7 

Supplementary Fig.7  Full-length blot for Fig.6h Co-IP DNT2 Toll-6 

Supplementary Fig.8  Full-length blot for Fig.6i Co-IP DNT2 Toll-6, DNT1 Toll7 

Supplementary Fig.9  Full-length blot for Fig.6j in vivo Co-IP DNT1 Toll-7 

Supplementary Table 1 Genotypes of samples in Figure 5. 

Supplementary Table 2 List of primers used to generate fusion constructs. 

Supplementary Table 3 Statistical analysis details 

Supplementary Source Data files for Figs.3-6 and Supplementary Fig.4 

 

Online Methods 

1.1 Genetics 
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Mutants and reporters 

Toll-6MiMICMI02127 is a GFP-bearing insertion into the coding region of Toll-6 

(http://flybase.org/reports/FBti0140037.html). Toll-626, Toll-631, Toll-7P8 and Toll-7P114 are 

null mutant alleles generated by imprecise excision of P-element insertions (gift of J.L.Imler). 

Deficiencies Df(3L)DXG4 and Df(2R)BSC22 uncover Toll-6 and Toll-7, respectively. DNT141 

, DNT2e03444 and spz2  have been described 20,51. All stocks were balanced using lacZ marked 

balancers and/or TM6B Tb to identify mutants. Drosomycin-GFP (gift of J.M. Reihhart) is a 

reporter for Dif signalling.  

 

Over-expression in vivo 

Over-expression in vivo used the following GAL4 drivers: (1) w;; elavGAL4 for all neurons; 

(2) w; chaGAL4 (gift of R. Baines) for cholinergic neurons; (3) line D42 (gift of Sanyal), for 

Toll-6-GAL4 36; (4) w;Toll-7GAL4; (5) w; GMRGAL4 (gift of Matthew Freeman) for retina; 

(6) w;;HB9GAL4 for HB9-neurons;  (7) w;engrailedGAL4 (Bloomington). These were 

crossed to: (1) Membrane tethered reporters: (i) w;;UASGAP-GFP (gift of A.Chiba); (ii) 

w;UASmCD8-GFP; (iii) w;; 10xUAS-myr-td-Tomato (gift of B. Pfeiffer); (iv) UASDsRed 

(gift of K. Ito); (2) Activated forms of the receptors: (i) w; UASToll-6ΔLRR and w; UASToll-

7ΔLRR ; (ii) w;;UASToll-6CY and w;;UASToll-7CY ; (iii) and w;UASToll10b (gift of T. Ip); (iv) 

w;Lim3GAL4UASmyrRFP/CyOactYFP (gift of M. Landgraf) . Other lines were generated by 

conventional genetics.  

 

Survival Assays 

Flies were bred at 18°C, as stocks or crossed from heterozygous mutants over balancer 

chromosomes. The survival index (SI) is given by: SI = 2 x TM6B+/TM6B-. A SI of 1 is the 
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Mendelian expectation when viability is unaffected. See Supplementary Table 1 for 

genotypes of parental flies and sample sizes.  

 

1.2 Generation of fusion constructs  

Toll-7GAL4 

To generate Toll-7GAL4, a 5kb fragment immediately upstream of the Toll-7 start ATG was 

amplified by PCR using primers 1, 2 (Supplementary Table 2), cloned into 5’NotI and 3’ 

BamHI restriction sites of the pPTGAL vector . 

 

Cloning of full-length Toll-6 and Toll-7  

Toll-6 and Toll-7 are intronless genes. Full length open reading frames equivalent to cDNAs, 

were PCR amplified from genomic DNA, using primers 3-6 (Supplementary Table 2) and 

Gateway cloning was used to generate pAct-Toll-6-HA and pAct-Toll-7-HA fusion constructs.  

 

Cloning of Toll-6ECD-His-FLAG and Toll-7ECD-His-FLAG 

The extracellular domains (ECD) of Toll-6 and Toll-7 were cloned to produce secreted forms 

of the ligand binding domains for binding assays in vitro. Toll-6 and Toll-7ECDs sequences 

tagged with 6His were PCR amplified using primers 7-10 (Supplementary Table 2). Gateway 

cloning was used to generate pAct-Toll-6-ECD-6His-3xFLAG and pAct-7-ECD-6His-3xFLAG 

fusion constructs. 

 

Generation of activated forms of Toll-6 and Toll-7 for cell culture and transgenesis 

The activated Toll-6 and Toll-7 receptors; UASToll-6ΔLRR-HA and UASToll-7ΔLRR-HA are 

comprised of the signal peptide, transmembrane and intracellular domains of Toll-6 and Toll-
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7, but lack the entire extracellular domain. PCR from cDNA was used to amplify signal 

peptides (primers 11, 12, 15, 16 Supplementary Table 2) separately from transmembrane-

intracellular domains (primers 13, 14, 17, 18 Supplementary Table 2) and MluI sites were 

added to each, 3’ and 5’ respectively. MluI sites were used to ligate fragments, which were 

then cloned into pUAS-Gateway-HA-attB destination vector (gift of C. Basler) to produce 

pUAS-Toll-7ΔLRR-HA-attB and pUAS-Toll-6ΔLRR-HA-attB fusion constructs.  

 In UAS-Toll-6CY and UAS-Toll-7CY the conserved Cysteines at position 1020 of Toll-6 

and position 993 of Toll-7 are substituted for Tyrosine, mimicking the constitutively active 

allele of Toll, Toll10b, and the functional UASToll10b constructs. Overlap extension PCR 

following standard procedures was used to make the Cysteine to Tyrosine mutations in each 

receptor. The primers used were as follows: 5’ primers 19, 20, 23, 24 and 3’ primers 21, 22, 

25, 26 (Supplementary Table 2). The resulting products were cloned into the UAS-Gateway-

FLAG destination vector to produce pUAS-Toll-7CY-FLAG and pUAS-Toll-6CY-FLAG fusion 

constructs.  

 Sequencing confirmed that in UAS-Toll-7CYFLAG and of UAS-Toll-6CYFLAG the 

targeted Cysteines had been mutated to Tyrosine. There is an additional mutation in UAS-

Toll-7CYFLAG : Proline-58 to Leucine;  and in UAS-Toll-6CYFLAG : Serine-862 to Threonine,  

both in the extracellular domain.  

 

Cloning for DNT protein production 

DNT1 and DNT2 proteins were produced by S2 cell expression, from  

pAct5C-Pro-TEV6HisV5-DNT1-CK-CTD and pAct5C-Pro-TEV6HisV5-DNT2-CK fusion 

constructs encoding full length DNT1 and DNT2. A TEV protease sites designed to aid 

protein cleavage were not used, since they cleaved spontaneously. The DNT1/2 signal peptide 
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and pro-domain were PCR amplified from DNT1/2 cDNAs, with primers 27, 28, 33, 34 

(Supplementary Table 2). The DNT1/2 cystine-knots (plus the COOH extension CK-CTD for 

DNT1) were amplified using primers 29, 30, 35, 36 (Supplementary Table 2). Using 

overlapping PCR, tagged full-length DNT1/2 were obtained and cloned using Gateway.  

 To produce DNT2 protein using Baculovirus infected Sf9 insect cells, full-length 

DNT2 was PCR amplified from clone LD26258 (Berkeley Drosophila Genome Project) using 

primers 31, 32 (Supplementary Table 2). The insert was cloned into pFastBac1 vector 

(Invitrogen) using EcoRI and NotI sites.  

 

1.3 Protein purification  

Purification of Toll-6ECD and Toll-7ECDs produced from S2 cells 

S2 cells were transfected with pAct-Toll-6-ECD-6His-3xFLAG for Toll-6ECD or pAct-7-

ECD-6His-3xFLAG for Toll-7ECD, and incubated for 72 hours. Protein purification was 

performed as described above for DNT1 and DNT2. Toll-6 and Toll-7 ECDs were identified 

by mass spectrometry, at the Proteomics Facility, University of Birmingham. Ni-NTA 

purified Toll-6 and Toll-7 ECD proteins were further purified with anti-FLAG magnetic 

beads (Sigma-Aldrich) by standard procedures. The purified proteins were used for native 

gel-electrophoresis. 

 

Purification of DNT2 produced from Baculovirus 

A secreted DNT2 protein was produced in Sf9 insect cells by Baculovirus infection with 

DNT2pro-CK-TEV-6xHis sequence. The protein was purified as described previously 17. 

Edman (N-terminal) Sequencing was carried out at the Protein and Nucleic Acid Chemistry 

(PNAC) facility at the Department of Biochemistry, University of Cambridge. The cleaved, 
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mature cystine-knot domain of DNT2 was purified by reverse phase chromatography, as 

previously described for Spz15. 

 

1.4 Mass spectrometry   

Toll-6ECD and Toll-7ECD verification 

Coomassie bands were excised from gel, destained and subjected to in-gel digestion with 

trypsin for overnight at 37 °C using standard procedure. Peptides were extracted from gel 

pieces with acetonitrile and formic acid and dried in an evaporator. The samples were re-

suspended in 0.1% Formic Acid/water and subjected to liquid chromatography - tandem mass 

spectrometry which was performed using Ultimate® 3000 HPLC series (Dionex) coupled to a 

LTQ Orbitrap Velos ETD mass spectrometer (ThermoFisher Scientific) via a Triversa 

Nanomate nanospray source (Advion Biosciences) Peptide separation, mass spectrometric 

analysis and database search were carried out as specified at the University of Birmingham 

Proteomics Facility. The LTQ Orbitrap Velos ETD mass spectrometer used in this research 

was obtained through the Birmingham Science City Translational Medicine:  Experimental 

Medicine Network of Excellence project, with support from Advantage West Midlands 

(AWM). 

 

DNT2 verification 

DNT2CK was analysed by MALDI-TOF mass spectrometry, following procedures previously 

described for Spz15. 

 

1. 5 Western blotting  
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Western blotting was carried out following standard procedures. Primary antibodies used 

were: mouse anti-6-His (1:4000, BD Pharmingen, #552565) or mouse anti-6-His (1:1000, 

Thermo Scientific, #MA1-21315), mouse anti-V5 (1:5000, Invitrogen, #R960-25), mouse 

anti-Dorsal (7A4) (1:500, Hybridoma Bank), mouse anti-Cactus (3H12) (1:500, Hybridoma 

Bank), rabbit anti-Dif (1:500), chicken anti-HA (1:2000 and 1:5000, Aves, #ET-HA100), 

mouse anti-HA (12CA5)  (1:2000, Roche, #11 583 816 001). Secondary antibodies used 

were: anti-mouse HRP (1:5000, Vector Labs, #PI-2000), anti-rabbit HRP (1:5000, Vector 

Labs, #PI-1000), anti-chicken HRP (1:10000, Jackson ImmunoResearch, #703-035-155). For 

quantitative analysis of dorsal, cactus and Dif expression, five adult fly heads were 

pooled/sample (n=4, total 20 flies/genotype), then lysed in NP-40 lysis buffer (50 mM Tris-

HCl pH: 8.0, 150 mM NaCl, 1% NP-40). Western blot images were analysed by GeneTools 

software (Syngene). Here, band intensities were normalised to Ponceau red staining of the 

same membrane. 

  

1.6 S2 cell culture signalling assays 

Toll-6 and Toll-7 Transfections 

DNT1 was produced in S2 cells (Invitrogen) and DNT2 was produced by both S2 cells and 

Baculovirus. Purified ligands were added to S2 cells transfected with Toll-6 and Toll-7 

receptors to test activation of the snail-luciferase reporter by Dorsal, or nuclear translocation 

of Dorsal; the cell line 648-1B6 stably transfected with drosomycin-luciferase was used to test 

the activation of the drosomycin-luciferase reporter by Dif. To test downstream signaling by 

the activated receptors, S2 were transfected with 1μg pMTGAL4 and 1μg pUAS-Toll-7CY-

FLAG or 1μg pUAS-Toll-6CY-FLAG. To test signaling by Toll-6 and Toll-7 upon DNT 

binding, full-length Toll-6 and Toll-7 were expressed in S2 cells by transfecting with 1μg of 
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the pAct-Toll-7-HA or pAct-Toll-6-HA constructs.  S2 cells and the S2 cell-line 648-1B6 1B6 

stably transfected with Drosomycin-Luciferase were maintained by standard procedures and 

the TranIT-2020 (Mirus) transfection reagent was used. In all cases, pAct-Renilla was co-

transfected as a control. To determine Luciferase activity, we used the Dual-Glo Luciferase 

Assay System (Promega). 50μl of cell suspension were transferred in triplicate to an opaque 

96-well plate. 40μl of the supplied Firefly Luciferase Substrate was added, incubated for 10 

minutes at room temperature, and luminescence was measured using a SPECTRAFluro Plus 

(Tecan). 40μl Stop & Glo substrate was added, incubated at room temperature for 10 minutes 

and luminescence was measured. The relative Luciferase activity was determined by 

normalising the Firefly over the Renilla readout for each well.  

 

1.7 Co-immunoprecipitation (Co-IP)   

In vivo Co-IP from transgenic flies 

Transgenic flies of genotype w; GMRGAL4/UASDNT1CK3’FLAG+; UASToll-7FL-HA/+ 

were used for in vivo co-IP. Heads were homogenized in NP40 lysis buffer and spun at 1200g 

for 5 minutes at 4°. Supernatant was precleared with 20μl of protein-A/G magnetic beads 

(Pierce) for one hour at 4° and then incubated with 1μg mouse anti-Flag antibody (Sigma-

Aldrich) overnight at 4°C. 25μl of protein-A/G magnetic beads were added to the lysate and 

incubated at room temperature for 1 hour. The beads containing the immuno-complex were 

washed twice with lysis buffer and once in PBS. The immuno-complex was eluted in 2x 

Laemmli-buffer by incubating for 10 mins at room temperature and was analysed by 

SDS/PAGE.  

 

Co-IP from S2 cells 
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S2 cells were transfected with 1µg pAct-Toll-6-HA,  pAct-Toll-7-HA, pAct5C- Pro-

TEV6HisV5-DNT1-CK-CTD or pAct5C-Pro-TEV6HisV5-DNT2-CK, or co-transfected with 

1µg pAct5C- Pro-TEV6HisV5-DNT1-CK-CTD + 1µg pAct-Toll-7-HA per well or 1µg  

pAct5C-Pro-TEV6HisV5-DNT2-CK + 1µg pAct-Toll-6-HA per well. After 48h cells were 

collected and spun at 1000g for 5 min at 4°C. After washing in PBS cells were lysed in 

600µL NP-40 lysis buffer with protease inhibitor cocktail (Pierce Biotechnology) and left on 

ice for 30 min. After lysis, samples were spun at 14000g for 10min at 4°C. 500µL from each 

lysate was precleared with 20µL of protein-A/G magnetic beads (Pierce) for 1h at 4°C. 

Precleared lysates were incubated with 1.5µg anti-V5 or 1µg anti-HA antibody O/N at 4°C. 

Cell lysate-antibody mixtures were incubated with 25µL protein-A/G magnetic beads for 1 h 

at R/T. Beads were washed 2-4 times in NP-40 lysis buffer and once in PBS. Proteins were 

eluted in 40 µL 2x Laemmli-buffer and analysed by SDS-PAGE.  

 

1.8 ELISA 

S2 cells were seeded, transfected and processed as described above for Co-IP. ELISA was 

carried out following standard procedures. High-binding capacity ELISA plate (Greiner Bio-

One) wells were coated with anti-V5 antibody (1:1000) or anti-HA antibody (1:1000). Each 

well was incubated with 100µL of cell lysate and then with anti-HA antibody (1:1000) or 

anti-V5 (1:1000), respectively. ELISA signal was developed by TMB substrate (Pierce) and 

the reaction was stopped with 1M H3PO4. Absorbance was measured at 450nm. 

 

1.9 Native gel-electrophoresis 

To test if the secreted Toll-6ECD and Toll-7ECD can interact with mature DNT2-CK, 

proteins were mixed and putative complexes were run on a native gel. In native gels, protein 
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mobility does not depend on molecular weight, but on conformation and charge, relative to 

the pH of the buffer (i.e. as the difference between the buffer pH and the pI of the proteins 

increases, the proteins migrate further). We used sample and gel buffers at pH=8.8 and 

running buffer was pH=8.6. The pI of DNT2CK-TEV-6His is pI=7.94, i.e. very close to the 

buffer pH. The pI of Toll6ECD-6His-3xFLAG is pI =6.06 and that of Toll7ECD-6His-

3xFLAG is pI =6.0, i.e. quite different from the buffer pH. For pI and net charge calculation 

the Protein Calculator v3.3 was used (http://www.scripps.edu/~cdputnam/protcalc.html). At 

the pH of our buffers both proteins are negatively charged.  

 Toll-6ECD and Toll-7ECD were purified from S2 cell conditioned medium, and 

DNT2-CK was produced using Baculovirus and purified by reverse phase chromatography. 

12.5µL Ni-NTA- and FLAG-purified Toll-6 and/or Toll-7 ECD were mixed with 2µL of 

reversed-phase-purified DNT2-CK and left on ice for 30 min to form complexes. Protein 

mixtures or proteins alone were supplemented with 4x native gel-loading buffer (62.5mM 

Tris-HCl pH 8.8, 20% glycerol and 0.005% bromophenol-blue). Samples were separated on a 

6% polyacrylamide gel for 1h at 100V followed by 1h at 150V in the absence of SDS.  

Proteins were then analysed by Western blotting.  

 

1.10 Generation of anti-Toll-7, anti-DNT1 and anti-DNT2 antibodies 

Antibodies were raised to: (i) Toll-7 using peptide AAQRAQTWRPKREQLHLQQA, 

injected into guinea-pigs, and affinity purified (Davids Biotechnologie). (ii) DNT1: peptide 

VRYARPQKAKSASGEWKY; (iii) DNT2 peptide: KRLIALQGNGQN, for DNT1 and 

DNT2 peptides were injected into rabbits, and affinity purified (Davids Biotechnologie).  

 

1.11 In situ hybridisations and immunohistochemistry  
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In situ hybridisations followed standard procedures using mRNA probes, from pDONR-Toll-7 

linearised with HindIII and pDONR-Toll-6 linearised with SmaI, and both were transcribed 

with T7 RNA Pol.  

 Immunolabelling was carried out following standard procedures. Primary antibodies 

used were:  rabbit anti-GFP (1:250 – 1:1000, Invitrogen #A11122), mouse anti-GFP (1:1000, 

Invitrogen #A11120), rabbit anti-DsRed (1:100, Clontech #632496), mouse anti-FasII (1:4 -

1:250, DSHB ID4), mouse anti-Tyrosine Hydroxylase (TH, 1:50, Immunostar #22941), rabbit 

anti-cleaved-Caspase-3 (1:50, Cell Signalling #9661; 1:250 AbCam #Ab13847), mouse anti-

βgal (1:750, Sigma #G4644), guinea pig anti-HB9 (1:1000, gift of H.Broihier), rabbit anti-

HB9 (1:1000, gift of H.Broihier), mouse anti-Eve (1:5-1:10, DSHB 2B8), mouse anti-Dorsal 

(1:10, DSHB 7A4), guinea pig anti-Toll-7-AAQ (1:10 -1:30), rabbit anti-DNT1-VRY (1:50-

1:100), rabbit anti-DNT2-KRL (1:50 -1:100). Secondary antibodies were directly conjugated 

Alexa488, 546 and 647 (1:250, Molecular Probes) or biotinylated mouse or rabbit (1:300) 

followed by avidin amplification using the Vectastain ABC Elite kit (Vector Labs) or 

Streptavidin-Alexa488 (1:250, Molecular Probes). Stainings were carried out in populations 

of hundreds of embryos, at least 3 adult brains and 3 larval VNCs per experiment, and 

experiments were repeated at least twice and most often more. 

 

1.12 Imaging  

Laser-scanning confocal microscopy was carried out using a Leica SP2-AOBS and a 40x or 

63x lens at 512x512 or 1024x1024 pixels resolution, with 0.5 or 1 μm steps. Caspase+ 

apoptotic cells in vivo were counted automatically using DeadEasy Caspase software37.  

 

1.13 Automatic tracking of larval locomotion 
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Larvae were collected from crosses kept in vials with standard yeast-rich food at 25°C in 12h 

Light:12h Dark regime. All larvae analysed were also homozygous white (w) mutant. For our 

w+ Toll-626 stock, to obtain w; Toll-631/Toll-626 larvae, F1 larvae from a cross to w; Toll631 

females were sexed and only w– males were used. Larvae were collected, rinsed in water and 

placed on a large petri-dish containing agar, Vogel-Bonner salts and 40% glucose at room 

temperature, and on a light box. Larvae were allowed to recover for 10-20 seconds before 

filming commenced, and were then filmed for 1 minute. All filming was carried out in the 

morning between 1-5 hours after zeitgeber ‘lights on’ time and larvae from all genotypes 

were filmed in each session. Larvae were filmed using a Motic MC Camera 1.1 or a Cannon 

viedo camera.  

 Films were analysed using FlyTracker software (our modification of the ImageJ 

MTrack2 plug-in). Cannon films were first converted to .avi format using Any Video 

Converter Professional with codec .mjpeg and Motic films were decompressed using 

VirtualDub software (www.virtualdub.org) and saved in .avi format. Films were checked in 

VirtualDub for sequence continuity and images not containing larvae were edited out to 

ensure a continuous sequence of filmed crawling larvae. The first 400 frames were opened 

blindly in ImageJ, converted to greyscale, the resolution was set to 800 x 600 pixels, and 

saved as a stack of .tiff images. These were next analysed using FlyTracker in ImageJ. 

FlyTracker tracks the crawling larvae and produces three outputs per film: a stack of 400 

images with the location of the larva as identified by the software in each corresponding raw 

image; a path or trajectory of each larva in each film as a single .jpeg image; an excel 

spreadsheet with quantitative locomotion parameters. The speed in mm/sec was converted 

from the output in pixels using a photographed reference of known size in mm. All 
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trajectories for each genotype were plotted onto a single image using Adobe Photoshop 

layers. 

 

1.14 Statistical analysis 

For continuous data, kurtosis, skewness, histograms and Kolmogorov-Smirnov normality 

tests were carried out to test data distribution, and Levene tests for the homogeneity of 

variance. For a few samples that were not distributed normally within a data set that showed 

normal distribution, normality was assumed. Normally distributed data were analysed with 

unpaired t-tests for two sample comparisons, and One Way ANOVA (or Welch versions for 

significant Levene tests) for the whole data set followed by Dunnett (fixed control group) or 

Games-Howell (significant Levene tests) post-hoc tests or Bonferroni corrections for multiple 

t-tests. Data that were not distributed normally were analysed with Kruskal-Wallis for the 

whole data set followed by Dunn’s test for multiple comparisons. Categorical data were 

analysed with Chi-square tests, followed by a z-test and Bonferroni post-hoc to the whole data 

set or Bonferroni corrections for pairwise comparisons to controls. No blinding was done. For 

genetic in vivo experiments, the reproducibility of the experiment was verified by the overall 

large population sizes; cell culture experiments were carried out in general at least three times 

in triplicate. P values, tests and sample sizes are provided in the Results text and figure 

legends and further details in Supplementary Table 3. 
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