33 research outputs found

    Hypertensive emergency and type 2 myocardial infarction resulting from pheochromocytoma and concurrent capnocytophaga canimorsus infection

    Get PDF
    A diagnosis of myocardial infarction is made using a combination of clinical presentation, electrocardiogram and cardiac biomarkers. However, myocardial infarction can be caused by factors other than coronary artery plaque rupture and thrombosis. We describe an interesting case presenting with hypertensive emergency and type 2 myocardial infarction resulting from Pheochromocytoma associated with Capnocytophaga canimorsus infection from a dog bite. We also review current literature on the management of hypertensive emergency and Pheochromocytoma

    Removal processes for tributyltin during municipal wastewater treatment

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2013 Springer.The fate and behaviour of tributyltin (TBT) at two wastewater treatment works was examined. Both sites had two inlet streams, and each utilised high rate biological filters (biofilters) on one the streams, before treatment of the combined flows on trickling filters, with one having additional tertiary processes, installed to remove ammonia and solids. The study was designed to determine if these processes enhanced the removal of TBT. Degradation of TBT was observed in one of the biofilters, possibly as a result of temperature and hydraulic loading. At the treatment works with tertiary processes, the mass flux showed the overall removal of TBT was 68 %, predominantly due to removal with solids in the primary settlement processes. However, overall removal of 95 % was observed in the conventional trickling filter works with 94 % of this due to biodegradation in the trickling filter. The two works both removed TBT, but at different treatment stages and by different processes. Differences in the form (solubility) of TBT in the influent may have attributed to this, although further understanding of factors controlling degradation would allow for a more complete assessment of the potential of biological processes to remove hazardous compounds from wastewaters.United Utilities PL

    First-level trigger systems for LHC experiments

    Get PDF
    We propose to carry out a broad-based programme of R&D on level-1 trigger systems for LHC experiments. We will consider the overall level-1 which coordinates different subtriggers and which interacts with the front end electronics and with the level-2 system. Careful attention will be paid to systems aspects and problems of synchronization within the pipelined processor system. Trigger algorithms for selecting events with high-pt electrons, photons, muons, jets and large missing Et will be evaluated by physics simulation studies. We will study possible implementations of such trigger algorithms in fast electronics by making conceptual design studies and using behavioural simulation models. For critical areas more detailed design studies will be made, and prototypes of some key elements will be constructed and tested. The proposed R&D project builds on existing studies and will complement other R&D projects already funded by the DRDC

    Acute Infarct Extracellular Volume Mapping to Quantify Myocardial Area at Risk and Chronic Infarct Size on Cardiovascular Magnetic Resonance Imaging

    Get PDF
    Background—Late gadolinium enhancement (LGE) imaging overestimates acute infarct size. The main aim of this study was to investigate whether acute extracellular volume (ECV) maps can reliably quantify myocardial area at risk (AAR) and final infarct size (IS). Methods and Results—Fifty patients underwent cardiovascular magnetic resonance imaging acutely (24–72 hours) and at convalescence (3 months). The cardiovascular magnetic resonance protocol included cines, T2-weighted imaging, native T1 maps, 15-minute post-contrast T1 maps, and LGE. Optimal AAR and IS ECV thresholds were derived in a validation group of 10 cases (160 segments). Eight hundred segments (16 per patient) were analyzed to quantify AAR/IS by ECV maps (ECV thresholds for AAR is 33% and IS is 46%), T2-weighted imaging, T1 maps, and acute LGE. Follow-up LGE imaging was used as the reference standard for final IS and viability assessment. The AAR derived from ECV maps (threshold of >33) demonstrated good agreement with T2-weighted imaging–derived AAR (bias, 0.18; 95% confidence interval [CI], −1.6 to 1.3) and AAR derived from native T1 maps (bias=1; 95% CI, −0.37 to 2.4). ECV demonstrated the best linear correlation to final IS at a threshold of >46% (R=0.96; 95% CI, 0.92–0.98; P<0.0001). ECV maps demonstrated better agreement with final IS than acute IS on LGE (ECV maps: bias, 1.9; 95% CI, 0.4–3.4 versus LGE imaging: bias, 10; 95% CI, 7.7–12.4). On multiple variable regression analysis, the number of nonviable segments was independently associated with IS by ECV maps (β=0.86; P<0.0001). Conclusions—ECV maps can reliably quantify AAR and final IS in reperfused acute myocardial infarction. Acute ECV maps were superior to acute LGE in terms of agreement with final IS. IS quantified by ECV maps are independently associated with viability at follow-up

    The impact of trans-catheter aortic valve replacement induced leftbundle branch block on cardiac reverse remodeling

    Get PDF
    Background Left bundle branch block (LBBB) is common following trans-catheter aortic valve replacement (TAVR) and has been linked to increased mortality, although whether this is related to less favourable cardiac reverse remodeling is unclear. The aim of the study was to investigate the impact of TAVR induced LBBB on cardiac reverse remodeling. Methods 48 patients undergoing TAVR for severe aortic stenosis were evaluated. 24 patients with new LBBB (LBBB-T) following TAVR were matched with 24 patients with a narrow post-procedure QRS (nQRS). Patients underwent cardiovascular magnetic resonance (CMR) prior to and 6 m post-TAVR. Measured cardiac reverse remodeling parameters included left ventricular (LV) size, ejection fraction (LVEF) and global longitudinal strain (GLS). Inter- and intra-ventricular dyssynchrony were determined using time to peak radial strain derived from CMR Feature Tracking. Results In the LBBB-T group there was an increase in QRS duration from 96 ± 14 to 151 ± 12 ms (P < 0.001) leading to inter- and intra-ventricular dyssynchrony (inter: LBBB-T 130 ± 73 vs nQRS 23 ± 86 ms, p < 0.001; intra: LBBB-T 118 ± 103 vs. nQRS 13 ± 106 ms, p = 0.001). Change in indexed LV end-systolic volume (LVESVi), LVEF and GLS was significantly different between the two groups (LVESVi: nQRS -7.9 ± 14.0 vs. LBBB-T -0.6 ± 10.2 ml/m2, p = 0.02, LVEF: nQRS +4.6 ± 7.8 vs LBBB-T -2.1 ± 6.9%, p = 0.002; GLS: nQRS -2.1 ± 3.6 vs. LBBB-T +0.2 ± 3.2%, p = 0.024). There was a significant correlation between change in QRS and change in LVEF (r = -0.434, p = 0.002) and between change in QRS and change in GLS (r = 0.462, p = 0.001). Post-procedure QRS duration was an independent predictor of change in LVEF and GLS at 6 months. Conclusion TAVR-induced LBBB is associated with less favourable cardiac reverse remodeling at medium term follow up. In view of this, every effort should be made to prevent TAVR-induced LBBB, especially as TAVR is now being extended to a younger, lower risk population

    Myocardial effects of aldosterone antagonism in heart failure with preserved ejection fraction

    Get PDF
    Background: Spironolactone may have prognostic benefit in selected patients with heart failure with preserved ejection fraction. This study assessed the myocardial tissue effects of spironolactone in heart failure with preserved ejection fraction. Methods and Results: A 1:1 randomized controlled study of 6 months of spironolactone versus control in heart failure with preserved ejection fraction. The primary outcome was change in myocardial extracellular volume fraction by cardiovascular magnetic resonance as a surrogate of diffuse fibrosis. Of 55 randomized patients, 40 (20 women; age, 75.2±5.9 years) completed follow-up (19 treatment, 21 control). A significant change in extracellular volume over the study period was not seen (treatment, 28.7±3.7% versus 27.7±3.4% [P=0.14]; controls, 27.6±3.4% versus 28.3±4.4% [P=0.14]); however, the rate of extracellular volume expansion was decreased by spironolactone (−1.0±2.4% versus 0.8±2.2%). Indexed left ventricular mass decreased with treatment (104.4±26.6 versus 94.0±20.6 g/m 2; P=0.001) but not in controls (101.4±29.4 versus 104.0±32.8 g/m 2; P=0.111). Extracellular mass decreased by 13.8% (15.1±4.8 versus 13.0±3.4 g/m 2; P=0.003), and cellular mass decreased by 8.3% (37.6±10.0 versus 34.3±7.9 g/m 2; P=0.001) with spironolactone, but was static in controls. Conclusions: Spironolactone did not lead to significant change in extracellular volume. However, spironolactone did decrease rate of extracellular expansion, with a decrease in the mass of both cellular and extracellular myocardial compartments. These data point to the mechanism of action of spironolactone in heart failure with preserved ejection fraction, including a direct tissue effect with a reduction in rate of myocardial fibrosis

    Feasibility and reproducibility of a cardiovascular magnetic resonance free-breathing, multi-shot, navigated image acquisition technique for ventricular volume quantification during continuous exercise

    Get PDF
    Background: Cardiovascular magnetic resonance (CMR) image acquisition techniques during exercise typically requires either transient cessation of exercise or complex post-processing, potentially compromising clinical utility. We evaluated the feasibility and reproducibility of a navigated image acquisition method for ventricular volumes assessment during continuous physical exercise. Methods: Ten healthy volunteers underwent supine cycle ergometer (Lode) exercise CMR on two separate occasions using a free-breathing, multi-shot, navigated, balanced steady-state free precession cine pulse sequence. Images were acquired at 3-stages, baseline and during steady-state exercise at 55% and 75% maximal heart rate (HRmax), based on a prior supine cardiopulmonary exercise test. Intra-and inter-observer variability and inter-scan reproducibility were derived. Clinical feasibility was tested in a separate cohort of patients with severe mitral regurgitation (n=6). Results: End-diastolic volume (EDV) of both LV and RV decreased during exercise at 55% and 75% HRmax, although a reduction in RVEDV index was only observed at 75% HRmax. Ejection fractions (EF) for both ventricles were significantly higher at 75% HRmax compared to their respective baselines (LVEF 68%±3% vs. 58%±5%, P=0.001; RVEF 66%±4% vs. 58%±7%, P=0.02). Intra-observer and inter-observer reproducibility of LV parameters was excellent at all 3-stages. Although measurements of RVESV were more variable during exercise, the reproducibility of both RVEF and RV cardiac index was excellent (CV <10%). Inter-scan LV and RV ejection fraction were highly reproducible at all 3 stages, although inter-scan reproducibility of indexed RVESV was only moderate. The protocol was well tolerated by all patients. Conclusions: Exercise CMR using a free-breathing, multi-shot, navigated cine imaging method allows simultaneous assessment of left and right ventricular volumes during continuous exercise. Intra- and inter-observer reproducibility were excellent. Inter-scan LV and RV ejection fraction were also highly reproducible
    corecore