8 research outputs found

    The alpha-galactosidase A p.Arg118Cys variant does not cause a Fabry disease phenotype: data from individual patients and family studies

    Get PDF
    Acessível em: www.ncbi.nlm.nih.gov/pmc/articles/PMC4423738/Lysosomal α-galactosidase A (α-Gal) is the enzyme deficient in Fabry disease (FD), an X-linked glycosphingolipidosis caused by pathogenic mutations affecting the GLA gene. The early-onset, multi-systemic FD classical phenotype is associated with absent or severe enzyme deficiency, as measured by in vitro assays, but patients with higher levels of residual α-Gal activity may have later-onset, more organ-restricted clinical presentations. A change in the codon 118 of the wild-type α-Gal sequence, replacing basic arginine by a potentially sulfhydryl-binding cysteine residue - GLA p.(Arg118Cys) -, has been recurrently described in large FD screening studies of high-risk patients. Although the Cys118 allele is associated with high residual α-Gal activity in vitro, it has been classified as a pathogenic mutation, mainly on the basis of theoretical arguments about the chemistry of the cysteine residue. However its pathogenicity has never been convincingly demonstrated by pathology criteria. We reviewed the clinical, biochemical and histopathology data obtained from 22 individuals of Portuguese and Spanish ancestry carrying the Cys118 allele, including 3 homozygous females. Cases were identified either on the differential diagnosis of possible FD manifestations and on case-finding studies (n=11; 4 males), or on unbiased cascade screening of probands' close relatives (n=11; 3 males). Overall, those data strongly suggest that the GLA p.(Arg118Cys) variant does not segregate with FD clinical phenotypes in a Mendelian fashion, but might be a modulator of the multifactorial risk of cerebrovascular disease. The Cys118 allelic frequency in healthy Portuguese adults (n=696) has been estimated as 0.001, therefore not qualifying for "rare" condition

    Concordancia en el curso del trastorno bipolar en gemelas monocigóticas

    Get PDF
    Appeal from convictions for possession of methamphetamine, enhanced to a second degree felony, and possession of marijuana, a Class A misdemeanor, in the Third Judicial District, Salt Lake County, the Honorable Denise P. Lindberg presidin

    Spanish HTT gene study reveals haplotype and allelic diversity with possible implications for germline expansion dynamics in Huntington disease

    No full text
    We aimed to determine the genetic diversity and molecular characteristics of the Huntington disease (HD) gene (HTT) in Spain. We performed an extended haplotype and exon one deep sequencing analysis of the HTT gene in a nationwide cohort of population-based controls (n = 520) and families with symptomatic individuals referred for HD genetic testing. This group included 331 HD cases and 140 carriers of intermediate alleles. Clinical and family history data were obtained when available. Spanish normal alleles are enriched in C haplotypes (40.1%), while A1 (39.8%) and A2 (31.6%) prevail among intermediate and expanded alleles, respectively. Alleles ≥50 CAG repeats are primarily associated with haplotypes A2 (38.9%) and C (32%), which are also present in 50% and 21.4%, respectively, of HD families with large intergenerational expansions. Non-canonical variants of exon one sequence are less frequent, but much more diverse, in alleles of ≥27 CAG repeats. The deletion of CAACAG, one of the six rare variants not observed among smaller normal alleles, is associated with haplotype C and appears to correlate with larger intergenerational expansions and early onset of symptoms. Spanish HD haplotypes are characterised by a high genetic diversity, potentially admixed with other non-Caucasian populations, with a higher representation of A2 and C haplotypes than most European populations. Differences in haplotype distributions across the CAG length range support differential germline expansion dynamics, with A2 and C showing the largest intergenerational expansions. This haplotype-dependent germline instability may be driven by specific cis-elements, such as the CAACAG deletion
    corecore