161 research outputs found

    Gear wear process monitoring using acoustic signals

    Get PDF
    Airborne acoustic signals contain valuable information from machines and can be detected remotely for condition monitoring. However, the signal is often seriously contaminated by various noises from the environment as well as nearby machines. This paper presents an acoustic based method of monitoring a two stage helical gearbox, a common power transmission system used in various industries. A single microphone is employed to measure the acoustics of the gearbox under-going a run-to-failure test. To suppress the background noise and interferences from nearby ma-chines a modulation signal bispectrum (MSB) analysis is applied to the signal. It is shown that the analysis allows the meshing frequency components and the associated shaft modulating components to be captured more accurately to set up a clear monitoring trend to indicate the tooth wear of the gears under test. The results demonstrate that acoustic signals in conjunction with efficient signal processing methods provide an effective monitoring of the gear transmission process

    A Novel Method to Improve the Resolution of Envelope Spectrum for Bearing Fault Diagnosis Based on a Wireless Sensor Node

    Get PDF
    In this paper, an accurate envelope analysis algorithm is developed for a wireless sensor node. Since envelope signals employed in condition monitoring often have narrow frequency bandwidth, the proposed algorithm down-samples and cascades the analyzed envelope signals to construct a relatively long one. Thus, a relatively higher frequency resolution can be obtained by calculating the spectrum of the cascaded signal. In addition, a 50 % overlapping scheme is applied to avoid the distortions caused by Hilbert transform based envelope calculation. The proposed method is implemented on a wireless sensor node and tested successfully for detecting an outer race fault of a rolling bearing. The results show that the frequency resolution of the envelope spectrum is improved by 8 times while the data transmission remains at a low rate

    Misalignment diagnosis of a planetary gearbox based on vibration analysis

    Get PDF
    As a critical power transmission system, planetary gearbox is widely used in many industrial important machines such as wind turbines, aircraft turbine engines, helicopters. Early fault detection and diagnosis of the gearbox will help to prevent unexpected breakdowns of this important equip-ment. Misalignment is one of the major operating problems in the planetary gearbox which may be caused by inadequate system integration, variable operating conditions and differences of elastic deformations in the system. In this paper, the effect of varying degrees of installation misalignment of planetary gearbox are investigated based on vibration measurements using spectrum analysis and modulation signal bispectrum (MSB) analysis. It has shown that the misalignment can be diagnosed in the low frequency range in which the adverse effect due to co-occurrence of amplitude modula-tion and frequency modulation (AM-FM) effect is low compared with the components around meshing frequencies. Moreover, MSB produces a more accurate and reliable diagnosis in that it gives correct indication of the fault severity and location for all operating conditions. In contrast, spectrum can produce correct results for some of the operating conditions. Keywords: Planetary gearbox, Condition Monitoring, Misalignment, Modulation signal bispectrum

    Fast Spectral Correlation Detector for Periodic Impulse Extraction of Rotating Machinery

    Get PDF

    Combustion Diagnostics of a Diesel Engine with Biodiesel Fuels based on Vibro-acoustics and In-Cylinder Pressure Measurements

    Get PDF
    Biodiesel is one of the alternative fuels which is renewable, environmentally and can be used in diesel engines without modifications. For non-intrusive diagnosis, this study investigates the characteristics of combustion induced vibration and noise in a diesel engine fuelled with biodiesel blends under different operating conditions. The relationship between the engine vibro-acoustics and in-cylinder pressure was investigated based on the analysis of the measured cylinder head vibration, engine acoustics and in-cylinder pressure (peak pressure, pressure rise, and pressure rise rate). It has found that the biodiesel blends result in a slight increase of peak value of in-cylinder pressure when increasing the percentage of biodiesel. The engine running with biodiesel blends has slightly higher vibration, which is more related to the maximum rate of pressure rise which is closely related to the combustion process. In addition, the time domain RMS values of vibration is relating to the maximum rate of pressure rise whereas the RMS of acoustics signals is more relating to peak pressure. These show that vibro-acoustics include good information about combustion. However, more advanced analysis is needed to suppress noise influences for accurately representation of combustions due to different types of fuels

    Helical gear wear monitoring: Modelling and experimental validation

    Get PDF
    Gear tooth surface wear is a common failure mode. It occurs over relatively long periods of service nonetheless, it degrades operating efficiency and leads to other major failures such as excessive tooth removal and catastrophic breakage. To develop accurate wear detection and diagnosis approaches at the early phase of the wear, this paper examines the gear dynamic responses from both experimental and numerical studies with increasing extents of wear on tooth contact surfaces. An experimental test facility comprising of a back-to-back two-stage helical gearbox arrangement was used in a run-to-failure test, in which variable sinusoidal and step increment loads along with variable speeds were applied and gear wear was allowed to progress naturally. A comprehensive dynamic model was also developed to study the influence of surface wear on gear dynamic response, with the inclusion of time-varying stiffness and tooth friction based on elasto-hydrodynamic lubrication (EHL) principles. The model consists of an 18 degree of freedom (DOF) vibration system, which includes the effects of the supporting bearings, driving motor and loading system. It also couples the transverse and torsional motions resulting from time-varying friction forces, time varying mesh stiffness and the excitation of different wear severities. Vibration signatures due to tooth wear severity and frictional excitations were acquired for the parameter determination and the validation of the model with the experimental results. The experimental test and numerical model results show clearly correlated behaviour, over different gear sizes and geometries. The spectral peaks at the meshing frequency components along with their sidebands were used to examine the response patterns due to wear. The paper concludes that the mesh vibration amplitudes of the second and third harmonics as well as the sideband components increase considerably with the extent of wear and hence these can be used as effective features for fault detection and diagnosis

    Combustion Noise Analysis for Combustion and Fuels Diagnosis of a CI Diesel Engine Operating with Biodiesels

    Get PDF
    In this paper, the combustion noise of a compression ignition (CI) diesel engine operating with biodiesels has been investigated experimentally. It aims to explore an effective method for combustion process monitoring and fuel quality evaluation through analysing the characteristics of the engine combustion noise. The experiments were conducted on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine fuelled with biodiesels (B50 and B100) and normal pure diesel, and operating under different loads and speeds. The signals of cylinder head vibration, engine noise and in-cylinder pressure were measured during the tests. A coherent power spectrum analysis method was used to investigate the vibration and noise signals that related to the combustion process. The results shown that the noise components at the frequency band of 2 -3 kHz are closely related to the combustion process. Subsequently, the Wigner-Ville distribution is employed to present the energy distribution of engine noise in the time-frequency domain. Then a band-pass filter based on fractional Fourier transform (FRFT) is developed to extract the main component of the combustion noise for feature extraction. The results show that the sound pressure levels (SPLs) of the extracted combustion noise of the test diesel engine fuelled with biodiesels are higher than that fuelled with diesel. This is also identical to the variation of in-cylinder pressure. The results demonstrate that the features of the extracted combustion noise can indicate the combustion characteristics and provide useful information for monitoring the combustion process and evaluating the fuel quality of diesel engines
    • …
    corecore