
 
Abstract—Intelligent fault detection of rotating machines is 

essentially a pattern classification issue. At the same time, 
effectively obtaining fault features from the measured signals 
is a key step to timely diagnose the health status of rotating 
machinery and evaluate the results of fault classification. To 
accurately obtain effective fault information to enhance fault 
accuracy, this paper proposes a novel fault detection scheme 
based on cyclic morphological modulation spectrum (CMMS) 
and hierarchical Teager permutation entropy (HTPE). In this 
scheme, firstly, CMMS was developed to analyze the measured 
signal to obtain a series of CMMS slices with different 
frequency bands, which solved the deficiencies of manual 
empirical selection of frequency band bandwidth in the 
traditional cyclic modulation spectrum (CMS). Subsequently, 
by integrating Teager energy operator into hierarchical 
permutation entropy (HPE), an improved feature selection 
method named hierarchical Teager permutation entropy 
(HTPE) is presented to obtain fault information of different 
frequency band slices, which can improve the fault feature 
extraction capability of HPE. Finally, the acquired HTPE-based 
vectors are integrated into the extreme learning machine 
(ELM) classifier to achieve fault classification of rotating 
machinery under different working conditions. The proposed 
scheme is validated by experimental cases including 
cylindrical roller bearings and planetary gearboxes. The 
analysis results indicate that the proposed scheme not only 
can effectively obtain the fault features, but also accurately 
realize the classification and recognition of the fault mode. In 
addition, the proposed scheme can achieve higher detection 
accuracy than some existing algorithms. 
 

Index Terms—Cyclic morphological modulation spectrum; 
Hierarchical Teager permutation entropy; Rotating machinery; 
Fault detection. 

 
Manuscript received December 7, 2021; revised March 27, 2022; 

accepted June 15, 2022.This work was supported in part by the National 
Science and Technology Major Project under Grant 
J2019-IV-0018-0086, in part by the National Program for Support of 
Top-Notch Young Professionals, in part by the China Postdoctoral 
Science Foundation under Grant 2021M702122, and in part by the 
National Natural Science Foundation of China under Grant 12121002. 
Paper no. TII-22-1378. (Corresponding author: Qingbo He) 

Junchao Guo and Qingbo He are with the State Key Laboratory of 
Mechanical System and Vibration, Shanghai Jiao Tong University, 
Shanghai 200240, China. (e-mail: jc_guo12@sjtu.edu.cn; 
qbhe@sjtu.edu.cn).  

Dong Zhen is with the School of Mechanical Engineering, Hebei 
University of Technology, Tianjin 300401, China. (e-mail: 
d.zhen@hebut.edu.cn).  

Fengshou Gu is with the Centre for Efficiency and Performance 
Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK. 
(e-mail: f.gu@hud.ac.uk). 

I. INTRODUCTION 

AULT diagnosis of rotating machinery is an essential topic in 
prognostics and health management systems. Unexpected 
failure of rotating machinery can cause damage to mechanical 

equipment, resulting in huge economic losses and even casualties 
[1], [2]. In addition, since the rotating machinery has been working 
in harsh environments, the measurement signals obtained by 
sensors are easily affected by the complex transmission path and 
strong background noise, which also greatly increases the 
difficulty of rotating machine’s fault diagnosis [3], [4]. Therefore, 
timely and accurate diagnosis of rotating machines faults is of 
great significance to prevent serious equipment damage and 
downtime. Currently, a few signal processing techniques are 
applied in rotating machinery fault diagnosis. For instance, 
variational mode decomposition (VMD), maximum correlated 
kurtosis deconvolution (MCKD), singular value decomposition 
(SVD) and sparse decomposition, etc. Although these techniques 
have made certain achievements in improving the accuracy of 
rotating machinery fault detection, they are based on tracking the 
amplitude of the fault frequency and neglecting the inherent 
modulation characteristics in the measurement signal. If the 
modulation components and carrier components of the 
measurement signal cannot be effectively separated, it will be 
difficult to accurately obtain the fault features. 

Spectral correlation (SC) analysis is a two-dimensional 
spectrogram that can simultaneously present modulation 
components and carrier components for fault detection in rotating 
machinery [5], [6]. However, the SC contains abundant discrete 
Fourier transforms in the analysis process of the measurement 
signals, which results in excessive calculational costs. In order to 
solve this problem, Antoni et al. [7] developed a cyclic modulation 
spectrum (CMS), which first performs a short-time Fourier 
transform (STFT) on the measured signal, and then implements a 
Fourier transform on the time axis of the spectrum. It not only 
greatly improves the performance of fault extraction, but also 
significantly outperforms SC in terms of computational efficiency. 
With its excellent performance, CMS provides an effective tool for 
rotating machinery fault diagnosis [8], [9]. However, the 
maximum cycle frequency αmax of CMS is chosen to be less than 
Fs/2 (Fs represents the sampling frequency), and its cycle 
frequency resolution is low because the window size applied used 
in STFT is fixed. Multi-scale combination morphological filter 
(MCMF) is a nonlinear filtering processing technique based on 
mathematical morphological transformation. It relies on structural 
elements (SE) with the same function as the filter window to match 
the geometric characteristics of the signal to be analyzed to achieve 
fault feature retention and interference noise removal. However, 
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because the SE of the same scale is applied, the output of MCMF 
will be biased [10]. Therefore, an improved MCMF operator with 
different scales is developed to construct an improved multi-scale 
combination morphological filter (IMCMF) and integrated into the 
CMS to replace the STFT window in this study, named cyclic 
morphological modulation spectrum (CMMS), which can 
effectively overcome the drawback of low cycle frequency 
resolution and expand the maximum cycle frequency range to 
improve the fault detection accuracy. Unfortunately, the choose of 
fault information bandwidth from CMMS relies on user experience 
choices. That is, improper selection of frequency bands will also 
affect the accuracy of the fault features. Sparsity measurement 
(SM) is a potential method to determine the optimal frequency, 
which involves the fault impulse component of the measured 
signal. Moreover, SM has been demonstrated to be an effective 
frequency band selection scheme [11], [12]. In view of this, SM is 
utilized to select the optimal frequency band of CMMS to reduce 
in-band noise. 

Apparently, several frequency bands selected by CMMS using 
SM have different fault signatures. Therefore, it is necessary to 
adopt accurate measurement schemes to obtain the fault features of 
each frequency band. In recent years, entropy-based algorithms 
have been introduced into the fault feature extraction of rotating 
machinery, such as correlation dimension (CD), sample entropy 
(SE), approximate entropy (AE) and fuzzy entropy (FE). Although 
these algorithms have achieved certain benefits in fault feature 
extraction, they still have some limitations in their applications. 
The CD requires a longer data set when processing the measured 
data, so CD is not suitable for practical applications [13]. The SE is 
generated by the Heaviside step function, which is discontinuous 
and abrupt at the boundary [14]. The AE largely depends on record 
length and lower estimation value in fault feature extraction [15]. 
The FE is defined using the membership function, and the 
parameters are extremely hard to determine [16]. Recently, a new 
entropy-based algorithms named permutation entropy (PE) was 
put forward by Bandit [17], which can amplify weak signals and 
detect the operating mode of the mechanical devices. On the basis 
of PE, multi-scale permutation entropy (MPE) is put forward to 
improve the statistical significance of PE. However, the 
coarse-grained program applied in MPE indicates linear 
smoothing, which uses an averaging strategy to obtain 
low-frequencies while ignoring the feature information submerged 
in high-frequencies [18]. Therefore, Li et al. [19] developed a new 
indicator named hierarchical permutation entropy (HPE), which is 
specifically used to evaluate the dynamics of rotating machinery 
systems. In view of the excellent performance of HPE, a large 
number of researchers have made great contributions to promote 
the development of HPE-based weak fault feature extraction 
methods [20], [21]. Besides, the Teager energy operator (TEO) 
was selected as an effective demodulation fault feature method by 
Randall et al. [22] and Song et al. [23] to recognize fault types 
under different operating situations. Based on the advantages of 
HPE and TEO, a novel feature extraction algorithm is presented, 
called hierarchical Teager permutation entropy (HTPE), which can 
effectively overcome the modulation information that HPE cannot 
effectively capture the frequency band features. Hence, CMMS 
and HTPE are combined to obtain fault features of rotating 
machine in this study. Finally, the acquired feature vectors are 
integrated into the extreme learning machine (ELM) classifier to 
achieve the fault classification of rotating machine under different 
working situations. It should be pointed out that compared with 
these classification methods (e.g., back-propagation neural 
network (BPNN), k-nearest neighbor (KNN) and support vector 

machine (SVM)), ELM classifier has the advantages of fast 
learning speed and good generalization ability. Additionally, the 
weight matrix between the input layer and the hidden layer and the 
bias of the hidden layer neurons are randomly assigned, and no 
adjustment is required during the training process [24], [25]. 

To sum up, the main intention of this paper is to develop a new 
intelligent fault detection scheme that integrates CMMS, HTPE 
and ELM classifier to realize automatic fault feature recognition 
and classification. The main innovations and novelties of this 
paper are summarized as follows: (1) A new method named 
CMMS is proposed to decompose the measurement signal to 
obtain CMMS slices with different frequency bands, which 
overcomes the shortcomings of traditional CMS that require 
manual experience to select bandwidth and low cyclic frequency 
resolution to obtain more comprehensive and abundant fault 
feature information. (2) A novel fault feature indicator (i.e., HTPE) 
is developed to construct feature vectors, which can overcome the 
deficiency that HPE cannot effectively capture the modulation 
information of frequency band features and improve the fault 
identification ability of rotating machinery. The results on 
simulated signals and two experimental cases indicate the 
proposed scheme realizes the classification and recognition of the 
fault mode. In addition, compared with some existing methods 
(e.g., MSB-HTPE, Fast-SC-HTPE, CMMS-HPE, CMMS-HSE 
and CMMS-HPE), the CMMS-HTPE provides better detection 
performance when used for rotating machinery fault classification. 

The remainder of the paper is organized as follows. In Section 
Ⅱ, the theoretical aspects of CMMS are introduced. In Section Ⅲ, 
the detailed diagnostic process of the proposed scheme is 
presented. Vibration signals collected from the cylindrical roller 
bearings and planetary gearboxes are provided to illustrate the 
effectiveness of the proposed scheme in Section Ⅳ. Finally, the 
conclusions of the research work are summarized in Section Ⅴ. 

II. CYCLIC MORPHOLOGICAL MODULATION SPECTRUM 

A. Cyclic Morphological Modulation Spectrum 

Morphological filter (MF) is a non-linear filtering technology. 
Its core idea is to perform front-to-back translation matching or 
partial correction to the original signal by constructing specific 
structural elements, so as to suppress noise while retaining the 
morphological characteristics of the signal. According to the local 
morphological characteristics of the signal to be processed, the 
signal is separated from noise through MF. Let g is a unit SE, and 

( 1,2, , )k k K   is the scale, the SE used in the scale k can be 
expressed as: 
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Assume that f(n) is the input signal. Multi-scale basic 
morphological operators are defined as: 
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where  ,  ,   and   are dilation, erosion, opening and closing 
operator, respectively. Based on the combination of opening and 
closing operator, two multi-scale morphological filters, namely, 
multi-scale opening-closing ( O Ck

F ) and multi-scale 
closing-opening ( COk

F ), which are defined as follows:  
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Both the ( )O Ck
F n  and ( )COk

F n  filters can obtain cyclic impulses. 

However, due to the statistical bias, satisfactory results cannot be 
obtained by the ( )O Ck

F n  or ( )COk
F n  filter alone. To solve the 

problem, the average combination of ( )O Ck
F n  and ( )COk

F n  (i.e., 

multi-scale combination morphological filter, MCMF) is proposed, 
which is expressed as: 
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For the ( )O Ck
F n  filter, the first opening operator can enhance 

negative impulses and filter out positive impulses. If the closing 
operator uses the same length of SE, it will not be able to 
effectively filter out all negative impulses. Similarly, the ( )COk

F n  

filter also has the same issue. To eliminate the above issue, the 
improved multi-scale opening-closing ( ˆ ( )O Ck

F n ) and multi-scale 

closing-opening ( ˆ ( )COk
F n ) filters are defined as: 
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where the lengths of g1 and g2 are L and 2L-1, respectively. The 
improved multi-scale combination morphological filter (IMCMF), 
which is denoted as: 
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where ˆ ( )( 1,2, , )ky n k K   is a two-dimensional matrix ˆ( , )y k n , each 

row of which corresponds to a specified scale k, each column 
corresponds to a specific point n across entire scales. Due to the 
appearance of random noise and interference frequencies, it is 
difficult to accurately identify periodic impulse features in the time 
domain. Therefore, the discrete Fourier transform (DFT) is applied 

to transform ˆ( , )y k n  into ˆ( , )xY k f , which is defined as: 
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where ˆ( , )xY k f  represents spectrum of the IMCMF, fx means 

spectral frequency. Consequently, cyclic morphological 
modulation spectrum (CMMS) is calculated from the DFT of 
IMCMF spectrum, which is defined in Eq. (13): 
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where Fs means the sampling frequency, K represents the signal 
length, α indicates the cyclic frequency. The normalized form of 
CMMS can be given by Eq. (14), and the result is shown in Fig. 1. 
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Fig. 1. Normalized form of CMMS. 

To get the suboptimal fx slices, the ( , )CMMS xa f  is determined by 

CMMS slice S(fx), which is computed by averaging the main 
CMMS peaks: 
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where g  means the frequency resolution in the α direction. 
However, CMMS needs a better method to select the number of 
frequency bands. In other words, when the CMMS processes the 
measured signals to extract fault defect features, it needs to choose 
a reasonable bandwidth. Consequently, a new criterion called 
sparseness measurement (SM) is proposed to determine the 
number of CMMS slices to cover the useful resonance frequency 
band to reduce the loss of effective fault information. According to 
the analysis of CMMS slice S(fx), the SM can be defined as 
follows: 
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where L indicates the length of the CMMS slices. The
1

( )xS f  and 

2
( )xS f  are L1 norm and L2 norm, respectively. If the measured 

signal has good sparsity, the SM will be larger. That is, the larger 
the SM, the better the CMMS fault feature extraction effect. 
Therefore, the largest SM is used to determine the number of 
CMMS slices. 

To obtain more robust results, the CMMS detector is 
constructed by averaging the selected suboptimal slices marked 
with ‘  ’ in Fig. 1, which is defined as: 
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where P represents the total number of selected CMMS slices, 
which depends on the number of SM. 

B. Comparison of CMMS, MSB and Fast-SC by 
simulation signal 

To evaluate the performance of the CMMS, the results are 
compared with modulation signal bispectrum (MSB) [26] and Fast 
spectrum correlation (Fast-SC) [27]. The rolling element bearing 
fault model x(t) with a local fault is defined as follows [28]: 
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where the first part represents the periodic interference 
components from the rotor or shaft, fo indicates the rotational 
frequencies, set to 10 Hz, Al and θl represent the measured signal 
amplitude and initial phase of the lth harmonic, respectively. The 
second part indicates the periodic impulse signal produced by a 
bearing defect, Ci indicates the ith impulse amplitude. G(t) means 
the impulse response. The τi indicates a uniformly distributed 
random number for the random slippage effect of the bearing, 
which is often represented as 1%~2% of the T. The periodic 
impulse can be denoted as follow: 

( ) sin(2 )t
rG t e f t  (19) 

where fr stands the resonant frequency, ə represents the decay 
parameter. The third part indicates random impulse aroused by 
external interference from the rolling bearing housing. Among 
them, Rj stands random impulse amplitude, Trj indicates 
occurrence time. The last part n(t) represents Gaussian white noise 
with a signal-to-noise ratio (SNR) of -15 dB. The parameters of the 



bearing fault model are illustrated in Table Ⅰ. Meanwhile, the 
sampling frequency fs= 96 kHz and sampling number N=960000. 
Fig. 2 displays the time waveform of x(t) and its frequency 
spectrum. 

TABLE Ⅰ 
PARAMETERS OF THE BEARING FAULT MODEL 

Rotor or shaft Periodic impulses Random shocks 

1A  1  iC  T  
1rf  1  2rf  2  

0.01  1 1/60 4500 300 2500 500 

The CMMS is utilized to process the simulated signal illustrated 
in Fig. 2(a) to extract the fault defect frequencies. First of all, the 
lengths of g1 and g2 are 3 and 5 [29], respectively. Subsequently, 
the CMMS slices S(fx) are computed using Eq. (15), and the 
suboptimal CMMS slices are selected according to the SM 
method. As illustrated in Fig 3, when the CMMS slice is 3, SM 
reaches its maximum value. Finally, the CMMS is obtained 
through averaging 3 suboptimal CMMS slices with ‘*’ makers in 
Fig. 4(a), and the detection result is displayed in Fig. 4(b). It is 
clearly found that the CMMS can accurately distinguish the fault 
frequency 60 Hz and its first 4 harmonics. 

 
Fig. 2. Simulation case: (a) time waveform (b) frequency spectrum. 

 
Fig. 3. The SM value of CMMS slices. 

 
Fig. 4. Results of the CMMS: (a) CMMS slice (b) CMMS detector. 
For comparison, the MSB and Fast-SC are utilized to process 

the simulated signal of defective bearing. The MSB is a novel 
modulation signal demodulation algorithm put forward in Ref. 
[26]. For MSB method, the MSB slice and window length Nw are 
set to 3 and 214. The algorithm uses the above parameters to 
suppress the interference of random noise and non-periodic 

components to clearly reflect the modulation components in the 
measurement signal. As depicted in Fig. 5, the detection result 
obtained by the MSB is difficult to distinguish the fault 
frequencies. For the Fast-SC algorithm [27], the window length Nw 
and the maximum cyclic frequency αmax are equal to 214 and 250 
Hz, the Fast-SC using the above parameters to process the fault 
model. Hereafter, the enhanced envelope spectrum (EES) is 
utilized to obtain the fault defect frequencies from Fast-SC filtered 
signals. Although the fault defect frequency 60 Hz and its first 4 
harmonics can be extracted, the redundant noise and interference 
frequencies in higher harmonic frequencies still exist as illustrated 
in Fig. 6. 

 
Fig. 5. Results of the MSB: (a) MSB slice (b) MSB detector. 

 
Fig. 6. Results of the Fast-SC: (a) spectral coherence image (b) EES 
generated in the frequency band from 4000 Hz to 5000 Hz. 

 
Fig. 7. The defect index of three algorithms under different SNRs. 
In order to further highlight the effectiveness of the CMMS 

algorithm, the defect index u is presented to evaluate the 
performance of three algorithms. The defect index u is defined as 
follows: 



2

2
10 2

2

10log
p

n

A
u

A

 
 
 
 

 (20) 

where Ap and An indicate the magnitude of the fault frequency and 
white noise (or random impulse) interferences. Fig. 7 depicts the u 
of three algorithms under different SNRs. As depicted in Fig. 7, 
with the SNR decreases, the u of three algorithms also gradually 
decreases. Moreover, CMMS has stronger fault recognition 
capabilities than MSB and Fast-SC. Through the above 
comparison, the CMMS illustrates higher performance in terms of 
enhanced fault features and signal modulation. 

III. THE PROPOSED FAULT DETECTION SCHEME 

A. Hierarchical Teager permutation entropy for feature 
extraction 

Teager energy operator (TEO) is a novel model of nonlinear 
operator that forecasts the entire energy required through the signal 
source to generate a dynamic signal by the nonlinear combination 
of the instantaneous value of the signal. For a given CMMS slice 

( ) =1,2, ,x xS f f P（ ）, the TEO can be defined as follows: 
2( ( )) ( ) ( 1) ( 1)x x x xS f S f S f S f      (21) 

where ( ( ))xS f means the use of 3 samples to calculate the signal 

energy at frequency fx. Then, use phase space reconstruction to 
obtain the matrix: 
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where m and τ are embedding dimension and delay time, 
respectively. Each row Y(j) in the matrix Y is treated as a 
reconstructed component, with a total of n reconstructed 
components, and ( 1)n P m    . Rearrange 

 ( ) ( ( )), ( ( + )), , ( ( ( 1) ))Y j S j S j S j m       in ascending order, 
1 2, , , mj j j  indicates the index of the column where each element in 

the reconstructed component is located, that is: 
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If there are equal values exist in the reconstructed component, 
which is    ( ( 1) ) ( ( 1) )x p x qS f j S f j        . At this time, the jp 

and jq values are sorted. When p qj j , the arrangement is 

expressed as: 
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Therefore, for each line Y(j) of any time series reconstructed, a 
set of symbol sequences can be obtained as follow: 
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where 1,2, ,l k   and !k m . The m dimensional phase space 
maps different m! symbol sequences, and symbol sequence B(l) is 
one of them. 

The occurrence probability of each symbol sequence is denoted 
as 1 2, , , kp p p  and the PE of ( ( ))xS f can be denoted as: 
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where 0 ( ) ln !pH m m  （ ）, when 1 !jp m , ( )pH m  reaches the 

maximum value ln !m（ ）. The PE value is normalized as: 

( ) / ln( !)p pH H m m  (27) 

The value of pH  represents the randomness degree of 
( ( ))xS f . The smaller value of pH , the more orderly the 
( ( ))xS f ; otherwise, the more random it is. Therefore, pH  

reflects a small change in the ( ( ))xS f . In order to describe the 
complexity of ( ( ))xS f  more accurately, the hierarchical 
permutation entropy (HPE) method is proposed in Ref. [20]. The 
averaging operator 0Q  and high operator 1Q  are expressed as: 

0

( ( )) ( ( +1))
( ( ))

2
x xS f S f

Q S
 

   (28) 

1

( ( )) - ( ( +1))
( ( ))

2
x xS f S f

Q S
 

   (29) 

Subsequently, the operator =0 or1Q
 （ ）at the hierarchical layer 
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For a given vector  1 2, , ,    , the integer  is written as: 
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where    , 1, , 0,1    means the 0Q  or 1Q at the th layer. 

According to the  1 2, , ,    , the hierarchical component of 

( ( ))xS f is written as: 
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The ,X   is used as the input of PE to calculate HTPE, as 

depicted in Eq. (33): 
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where HPEH  can more fully enhance the fault component and 

eliminate random noise of the measurement signal by combining 
the TEO and HPE, which is helpful for rotating machinery fault 
diagnosis. 

B. Extreme learning machine for fault recognition 

Extreme learning machine (ELM) is a classification algorithm 
based on single hidden layer feedforward neural network (SLFN), 
which has better generalization performance than traditional 
learning algorithms. Moreover, ELM is extremely insensitive to 
dynamic parameters and can complete the classification of data 
sets faster and more conveniently. Fig. 8 depicts the schematic 
diagram of ELM. 

For M training samples ( 1, , )jx j M  , where 

1 2, , ,
T c

j j j j cx x x x R     indicates the input data, 

1 2, , ,
T s

j j j jsz z z z R     indicates the desired output label. The 

output function is defined as: 

1
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where ( )g   denotes the sigmoid function of ELM, 

1 2[ , , ]T
i i i icw w w w ,  and 1 2[ , , ]T

i i i is    ,  are the weight 

vector between the ith hidden node and the input node, bi means 
the bias of the ith hidden node and oj means the output of ELM for 
jth sample. Next, the hidden nodes H is calculated as: 
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where β and Z denote the output weight vector and target matrix. In 
view of ELM theories, the hidden nodes (wi,bi) is randomly 
distributed rather than adjusted. The β of the Eq. (37) is calculated 
as: 

H Z   (37) 

where H   means Moore-Penrose generalized inverse of the 
hidden nodes H . 
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Fig. 8. Schematic diagram of ELM. 

C. The proposed fault detection scheme 

As mentioned above, this section develops a novel fault 
detection scheme based on CMMS, HTPE and ELM classifier. The 
framework of the fault detection scheme is illustrated in Fig. 9, and 
its diagnostic process is elaborated as follows: 
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Fig. 9. Diagnostic process of the intelligent fault detection scheme. 
(1) Noise reduction and demodulation. The collected vibration 

signals are pre-processed and demodulated using the CMMS to 
obtain a series of CMMS slices with different frequency bands. 

(2) Frequency band selection. A novel indicator SM is utilized 
to determine the CMMS slices to optimize the bandwidth of 
CMMS to improve feature extraction performance. 

(3) Feature extraction. The TEO of the CMMS slices is 
calculated and used as the import of the HPE to obtain the HTPE. 

(4) Fault recognition. The obtained HTPE is integrated into the 
ELM classifier to achieve fault classification of rotating machinery 
under different working conditions. 

IV. EXPERIMENTAL VALIDATION  

A. Case Ⅰ: Bearing Fault Diagnosis 

To verify the availability of the proposed scheme for rolling 
element bearing, the faulty cylindrical roller bearing was 
performed to collect vibration signals. As depicted in Fig. 10, the 
test bench is composed of motor, bearing house, flexible type 
coupling and DC generator. During the experiment, three different 
fault defects (i.e., outer race, inner race and ball race) on 
cylindrical roller bearings were produced using the electrical 
discharge machining, and their depth was 0.5 mm and width was 
0.2 mm. The sampling frequency of the faulty cylindrical roller 
bearing data was 71428 Hz and signal length were 300,000 data 
points, respectively. Geometric parameters of the faulty cylindrical 
roller bearing are described in Table Ⅱ. The faulty cylindrical roller 
bearing data consists of four working conditions. There are 40 
samples for each working condition and a total of 160 samples. 
The 80 samples are choosing randomly as the training data, and 
other 80 samples as the testing samples. These data messages are 
described in Table Ⅲ. 



 
Fig. 10. The test bench of cylindrical roller bearings. 

TABLE Ⅱ 
GEOMETRIC PARAMETERS OF CYLINDRICAL ROLLER BEARING  

Bearing 
type 

Ball numbers 
d (mm) 

Pitch Diameter 
Dm (mm) 

Ball Number 
z 

Contact Angle 
β 

N406 14 59 9  
Table Ⅲ 

DATA MESSAGES ABOUT CYLINDRICAL ROLLER BEARING 

Working conditions Class label 
Number of training 

data 
Number of testing 

data 
Normal 1 20 20 

Outer race 2 20 20 
Inner race 3 20 20 
Ball race 4 20 20 

The waveform of the cylindrical roller bearing under four 
working conditions are depicted in Fig. 11. Obviously, the fault 
feature information is completely overwhelmed by random noise 
and interference frequencies. To obtain the fault feature 
information, the measured signal is pre-processed and 
demodulated using the CMMS. Subsequently, the TEO of the 
CMMS filtered signal is calculated and used as the import of the 
HPE to obtain the HTPE vector. Finally, the acquired HTPE vector 
is integrated into the ELM classifier. Before the implementation of 
the ELM classifier, the number of hidden neurons is set to 20, and 
the sigmoidal function is applied [30]. Fig.12 illustrates the 
confusion matrix of the proposed scheme in the first trial. As 
depicted in Fig 12, the minimum detection accuracy rate is 95% 
and the average detection accuracy rate is 98.75%. This reveals 
that the CMMS-HTPE and ELM classifier can distinguish the 
different working conditions of cylindrical roller bearings, and the 
diagnosis accuracy is also desirable. 

 
Fig. 11. Waveform of cylindrical roller bearing fault. 

 
Fig. 12. Confusion matrix of the proposed scheme in the first trial. 

 
Fig. 13. Detection accuracy of three methods in 20 trials. 

To prove the availability of the proposed scheme, the measured 
signals of cylindrical roller bearing are applied to contrast the 
performance between CMMS-HTPE, MSB-HTPE and 
Fast-SC-HTPE. In addition, considering the randomness of the 
fault diagnosis results in one trial, the cylindrical roller bearing 
data is carried out twenty times in this study. Fig. 13 presents the 
detection accuracy of three algorithms for twenty trials. It can be 
found that compared with MSB-HTPE and Fast-SC-HTPE, 
CMMS-HTPE has the most outstanding detection accuracy. Thus, 
it is deduced that CMMS-HTPE is more robust than MSB-HTPE 
and Fast-SC-HTPE. 

 
Fig. 14. Average detection accuracy of four methods in 20 trials under 
different percentages of training samples. 

Table Ⅳ  
DETECTION ACCURACY OF THE FOUR METHODS UNDER DIFFERENT 

PERCENTAGES OF TRAINING SAMPLES  



Methods Accuracy rate acquired under different 
percentages of training samples (%) 

Average 
CPU 
time (s) 10% 30% 50% 70% 90% 

CMMS-H
TPE 

Max 89.58 95.54 95.00 94.94 96.53 

4.07 
Min 73.96 83.63 90.63 91.96 85.42 

Mean 81.39 90.20 93.28 93.57 93.19 
SD 4.54 2.26 1.14 0.75 3.07 

CMMS-H
PE [20] 

Max 87.84 88.69 87.50 87.50 91.32 

3.82 
Min 69.10 77.23 78.13 82.29 71.88 

Mean 79.08 83.95 84.38 85.30 83.63 
SD 5.66 2.93 2.48 1.81 4.29 

CMMS-H
SE [14] 

Max 80.56 78.13 75.00 79.46 78.82 

4.21 
Min 62.15 68.30 62.50 64.58 52.08 

Mean 70.05 72.80 71.25 70.76 69.34 
SD 4.88 2.86 3.45 3.51 5.67 

CMMS-H
FE [16] 

Max 79.17 76.93 81.25 77.83 76.74 

4.14 
Min 56.94 61.01 62.50 61.76 56.60 

Mean 69.57 72.29 72.97 70.60 62.28 
SD 6.26 3.65 4.56 3.88 5.81 

For comparison, the advanced fault detection method based on 
permutation entropy (e.g., Hierarchical permutation entropy (HPE), 
Hierarchical sample entropy (HSE) and Hierarchical fuzzy entropy 
(HFE)) are utilized to analyze the same data samples. Moreover, 
we set the parameters of all algorithms to the same value to process 
the experimental data, where m means embedding dimension, 
equal to 6, τ indicates time delay, set to 1, σ represents standard 
deviation (SD) of signal, q means hierarchical layer, set to 3, and r  
indicates the tolerance and is equal to 0.15 times of c. Concretely, 
for HTPE and HPE, we set m=6, τ=1 and q=3. For HSE and HFE, 
we set m=6, q=3 and r=0.15×σ, according to [19]. Here, we will set 
the percentage of training samples as: 10%, 30%, 50%, 70% and 
90%. Hereafter, the detection accuracy of the above four methods 
is calculated in 20 trials, as illustrated in Fig. 14. As depicted in 
Fig. 14, the CMMS-HTPE has the highest detection accuracy 
compared with the other three algorithms (CMMS-HPE, 
CMMS-HSE and CMMS-HFE) regardless of the percentage of 
training samples. In addition, Table IV lists the comparison 
indicators of the four algorithms in 20 trials, including the 
maximum (Max), minimum (Min), mean and SD of classification 
accuracy, as well as the average CPU time. As displayed in Table 
Ⅳ, the minimum and maximum recognition accuracy of the 
detection result of the proposed scheme is higher than that of the 
three algorithms (e.g., CMMS-HPE, CMMS-HSE and 
CMMS-HFE) under different percentages of training samples. At 
the same time, the average CPU time of the proposed scheme is 
4.07 s, which is lower than the CPU time of CMMS-HSE and 
CMMS-HFE, but higher than that of CMMS-HPE. The main 
reason that the calculation efficiency of the proposed scheme is 
lower than that of CMMS-HPE is that TEO is added to HPE. 
Moreover, the proposed scheme has the smallest SD, which reveals 
that the proposed scheme has the best detection ability. 

B. Case Ⅱ: Planetary Gearbox Fault Diagnosis 

In this section, the effectiveness of the proposed scheme will be 
further investigated on the planetary gearbox vibration signal 
obtained from the test platform presented in Fig. 15. Test platform 
consists of motor, planetary gearboxes, helical gearbox, load 
generator and vibration sensor are horizontally fixed on top of the 
planetary gearbox. In this experiment, the failure modes mainly 
include sun gear chipping and sun gear misalignment. The 
sampling frequency of the experiment data was 96 kHz and signal 
length were 300,000 data points, respectively. Geometric 
parameters of the planetary gearbox are described in Table Ⅴ. 
There are 40 samples under each working condition for a total of 
160 samples. The 80 samples are selected randomly as training 

samples and the other 80 samples as testing samples. The data 
messages are given in Table Ⅵ. 

 
Fig. 15. The test platform for the planetary gearbox facility. 

Table Ⅴ 
GEOMETRIC PARAMETERS OF PLANETARY GEARBOX 

Parameter Number of teeth 
Sun gear 10 

Planet gear (number) 26(3) 
Ring gear 62 

Carrier - 
Table Ⅵ  

DATA MESSAGES ABOUT PLANETARY GEARBOX 

Working conditions Class label 
Number of training 

data 
Number of 
testing data 

Normal 1 20 20 
Sun gear chipping 2 20 20 

Sun gear with 0.4 mm 
misalignment 

3 20 20 

Sun gear with 1.0 mm 
misalignment 

4 20 20 

Fig. 16 presents the waveform of the sun gear under four 
working conditions. From the waveform, the transient impulse 
information cannot be identified. The proposed scheme is utilized 
to process the faulty signals of the sun gear. Firstly, CMMS is used 
to perform noise reduction and signal demodulation on the 
measurement signal. Subsequently, the HTPE of the CMMS 
filtered signal is calculated to establish the CMMS-HTPE vector. 
Finally, the CMMS-HTPE vector is input into the ELM classifier 
to identify the type of sun gear failure. The confusion matrix of the 
proposed scheme in the first trial is presented in Fig. 17. It can be 
observed that several samples are misclassified, and the overall 
detection accuracy rate is 95%. This indicates that the 
CMMS-HTPE and ELM classifier can effectively recognize sun 
gear’s fault features under different operating conditions.  

 
Fig. 16. Waveform of sun gear. 



 
Fig. 17. Confusion matrix of the proposed scheme in the first trial. 

 
Fig. 18. Detection accuracy of three methods in 20 trials. 

Likewise, considering the randomness of the fault detection 
results in one trial, the sun gear data was carried out twenty times. 
In addition, other two algorithms (MSB-HTPE and 
Fast-SC-HTPE) are utilized to process the measured signals of sun 
gear under different working conditions. Fig. 18 illustrates the 
detection accuracy of three algorithms for twenty trials. It can be 
found that compared with (MSB-HTPE and Fast-SC-HTPE), 
CMMS-HTPE has the most outstanding detection accuracy. 
Similarly, Section Ⅳ. A, for HTPE and HPE, we set m=6, τ=1 and 
q=3. For HSE and HFE, we set m=6, q=3 and r=0.15×σ. Besides, 
we also will set the percentage of training samples as: 10%, 30%, 
50%, 70% and 90%. Fig. 19 depicts the average detection accuracy 
of the above four algorithms in 20 trials. As illustrated in Fig. 19, 
compared with CMMS-HPE, CMMS-HSE and CMMS-HFE, the 
CMMS-HTPE has the highest detection accuracy under different 
percentages of training samples. Moreover, Table Ⅶ shows the 
statistical indicators of the detection results, which are Min, Max, 
SD and average CPU time. As depicted in Table Ⅶ, the minimum 
and maximum recognition accuracy of the detection result of the 
proposed scheme is higher than that of the other three algorithms 
(e.g., CMMS-HPE, CMMS-HSE and CMMS-HFE) under 
different percentages of training samples. Meanwhile, the average 
CPU time of the proposed scheme is 1.48 s, which is lower than the 
CPU time of CMMS-HSE and CMMS-HFE, but higher than that 
of CMMS-HPE. In addition, the proposed scheme has the smallest 
SD, which demonstrates that the proposed scheme has the best 
detection performance. 

 
Fig. 19. Average detection accuracy of four methods in 20 trials under 
different percentages of training samples. 

Table Ⅶ 
DETECTION ACCURACY OF THE FOUR METHODS UNDER DIFFERENT 

PERCENTAGES OF TRAINING SAMPLES  
Methods Accuracy rate acquired under different 

percentages of training samples(%) 
Average 
CPU 
time (s) 10% 30% 50% 70% 90% 

CMMS-
HTPE 

Max 89.58 100 100 100 100 

1.48 
Min 73.96 90.48 90.63 89.73 88.19 

Mean 84.38 94.21 95.63 94.15 93.09 
SD 3.98 2.75 2.36 2.93 3.23 

CMMS-
HPE [20] 

Max 78.13 72.77 71.88 73.36 74.31 

1.26 
Min 62.85 62.05 59.38 62.35 55.90 

Mean 69.74 68.09 68.13 68.71 65.19 
SD 5.36 3.14 3.30 3.49 5.80 

CMMS-
HSE [14] 

Max 79.17 82.00 84.38 82.44 84.03 

1.63 
Min 62.15 68.90 71.88 64.58 68.40 

Mean 70.38 75.26 76.09 74.55 73.87 
SD 4.54 3.32 2.92 4.24 4.03 

CMMS-
HFE [16] 

Max 77.43 84.23 81.25 82.44 82.29 

1.55 
Min 53.13 71.73 68.75 65.18 53.82 

Mean 69.34 76.71 75.94 73.26 73.47 
SD 5.05 3.65 3.67 4.69 7.83 

V. CONCLUSION 

In this paper, a novel intelligent detection algorithm based on 
CMMS, HTPE and ELM is put forward, which can automatically 
realize fault classification of rotating machinery. Case studies of 
rolling bearings and planetary gearboxes verify the effectiveness of 
the proposed scheme in fault classification and identification. The 
main conclusions of this paper are summarized as follows: 

(1) A new cyclic morphological modulation spectrum (CMMS) is 
put forward for fault feature extraction. Simulation and experimental 
results reveal that CMMS has stronger denoising and demodulation 
performance than MSB and Fast-SC algorithms, indicating the 
superiority of using CMMS in fault feature extraction. 

(2) The hierarchical Teager permutation entropy (HTPE) is 
proposed to select CMMS features. Experimental analysis shows 
that CMMS-HTPE has better detection performance than some 
existing algorithms (e.g., CMMS-HPE, CMMS-HSE and 
CMMS-HPE). 

(3) The case study of rotating machinery shows that the proposed 
scheme realizes the classification and recognition of failure modes 
under different working conditions, and the detection accuracy is 
higher than that of the methods (e.g., MSB-HTPE, Fast-SC-HTPE, 
CMMS-HPE, CMMS-HSE and CMMS-HPE) under the ELM 
classifier. Thence, the proposed scheme is proved to be effective for 
identifying different operating conditions of rotating machinery. 
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