141 research outputs found

    Remote epitaxy of InxGa1-xAs (0 0 1) on graphene covered GaAs(0 0 1) substrates

    Get PDF
    The heteroepitaxial growth of lattice mismatched layers is crucial for modern semiconductor device fabrication, but it is a significant challenge in epitaxy. Growth of lattice mismatched materials creates strain in the epitaxial layer, which is usually relaxed by introducing crystal defects deteriorating the device performance. Remote epitaxy on graphene covered substrates was recently proposed to offer a different relaxation pathway for the strained films. Here, we report on the remote heteroepitaxy growth by molecular beam epitaxy (MBE) of InxGa1-xAs-layers (0 < x 0.5) on transfer graphene covered GaAs-(0 0 1) substrates. We show that a carefully optimized plasma treatment followed by ultra-high vacuum (UHV) annealing allows InxGa1-xAs remote epitaxy on transfer graphene covered GaAs substrates. Detailed investigations on the strain relaxation of 200 nm thick InxGa1-xAs-layers on graphene covered GaAs and for comparison on bare GaAs are presented. High-resolution X-ray-diffraction (HRXRD) and transmission electron microscopy (TEM) measurements reveal single crystalline growth on large areas. On bare GaAs we observe the well-known tilt of the InxGa1-xAs-layers whereas on graphene no tilt is observed. The layers grown on graphene are more relaxed than layers grown on bare GaAs and their strain relaxation is symmetric whereas on bare GaAs the strain relaxation is stronger along the [1 1 0] direction

    Multicentre appraisal of amyotrophic lateral sclerosis biofluid biomarkers shows primacy of blood neurofilament light chain.

    Get PDF
    The routine clinical integration of individualized objective markers of disease activity in those diagnosed with the neurodegenerative disorder amyotrophic lateral sclerosis is a key requirement for therapeutic development. A large, multicentre, clinic-based, longitudinal cohort was used to systematically appraise the leading candidate biofluid biomarkers in the stratification and potential therapeutic assessment of those with amyotrophic lateral sclerosis. Incident patients diagnosed with amyotrophic lateral sclerosis (n = 258), other neurological diseases (n = 80) and healthy control participants (n = 101), were recruited and followed at intervals of 3-6 months for up to 30 months. Cerebrospinal fluid neurofilament light chain and chitotriosidase 1 and blood neurofilament light chain, creatine kinase, ferritin, complement C3 and C4 and C-reactive protein were measured. Blood neurofilament light chain, creatine kinase, serum ferritin, C3 and cerebrospinal fluid neurofilament light chain and chitotriosidase 1 were all significantly elevated in amyotrophic lateral sclerosis patients. First-visit plasma neurofilament light chain level was additionally strongly associated with survival (hazard ratio for one standard deviation increase in log10 plasma neurofilament light chain 2.99, 95% confidence interval 1.65-5.41, P = 0.016) and rate of disability progression, independent of other prognostic factors. A small increase in level was noted within the first 12 months after reported symptom onset (slope 0.031 log10 units per month, 95% confidence interval 0.012-0.049, P = 0.006). Modelling the inclusion of plasma neurofilament light chain as a therapeutic trial outcome measure demonstrated that a significant reduction in sample size and earlier detection of disease-slowing is possible, compared with using the revised Amyotrophic Lateral Sclerosis Functional Rating Scale. This study provides strong evidence that blood neurofilament light chain levels outperform conventional measures of disease activity at the group level. The application of blood neurofilament light chain has the potential to radically reduce the duration and cost of therapeutic trials. It might also offer a first step towards the goal of more personalized objective disease activity monitoring for those living with amyotrophic lateral sclerosis

    TDP-43 as a potential biomarker for amyotrophic lateral sclerosis:a systematic review and meta-analysis

    Get PDF
    Abstract Background Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS) are incurable, progressive and fatal neurodegenerative diseases with patients variably affected clinically by motor, behavior, and cognitive deficits. The accumulation of an RNA-binding protein, TDP-43, is the most significant pathological finding in approximately 95% of ALS cases and 50% of FTD cases, and discovery of this common pathological signature, together with an increasing understanding of the shared genetic basis of these disorders, has led to FTD and ALS being considered as part of a single disease continuum. Given the widespread aggregation and accumulation of TDP-43 in FTD-ALS spectrum disorder, TDP-43 may have potential as a biomarker in these diseases. Methods We therefore conducted a systematic review and meta-analysis to evaluate the diagnostic utility of TDP-43 detected in the cerebrospinal fluid (CSF) of patients with FTD-ALS spectrum disorder. Results From seven studies, our results demonstrate that patients with ALS have a statistically significantly higher level of TDP-43 in CSF (effect size 0.64, 95% CI: 0.1–1.19, p = 0.02). Conclusions These data suggest promise for the use of CSF TDP-43 as a biomarker for ALS

    In Vivo Determination of Fluctuating Forces during Endosome Trafficking Using a Combination of Active and Passive Microrheology

    Get PDF
    BACKGROUND: Regulation of intracellular trafficking is a central issue in cell biology. The forces acting on intracellular vesicles (endosomes) can be assessed in living cells by using a combination of active and passive microrheology. METHODOLOGY/PRINCIPAL FINDINGS: This dual approach is based on endosome labeling with magnetic nanoparticles. The resulting magnetic endosomes act both as probes that can be manipulated with external magnetic fields to infer the viscoelastic modulus of their surrounding microenvironment, and as biological vehicles that are trafficked along the microtubule network by means of forces generated by molecular motors. The intracellular viscoelastic modulus exhibits power law dependence with frequency, which is microtubule and actin-dependent. The mean square displacements of endosomes do not follow the predictions of the fluctuation-dissipation theorem, which offers evidence for active force generation. Microtubule disruption brings the intracellular medium closer to thermal equilibrium: active forces acting on the endosomes depend on microtubule-associated motors. The power spectra of these active forces, deduced through the use of a generalized Langevin equation, show a power law decrease with frequency and reveal an actin-dependent persistence of the force with time. Experimental spectra have been reproduced by a simple model consisting in a series of force steps power-law distributed in time. This model enlightens the role of the cytoskeleton dependent force exerted on endosomes to perform intracellular trafficking. CONCLUSIONS/SIGNIFICANCE: In this work, the influence of cytoskeleton components and molecular motors on intracellular viscoelasticity and transport is addressed. The use of an original probe, the magnetic endosome, allows retrieving the power spectrum of active forces on these organelles thanks to interrelated active and passive measures. Finally a computational model gives estimates of the force itself and hence of the number of the motors pulling on endosomes

    Dialysis-associated peritonitis in children

    Get PDF
    Peritonitis remains a frequent complication of peritoneal dialysis in children and is the most common reason for technique failure. The microbiology is characterized by a predominance of Gram-positive organisms, with fungi responsible for less than 5% of episodes. Data collected by the International Pediatric Peritonitis Registry have revealed a worldwide variation in the bacterial etiology of peritonitis, as well as in the rate of culture-negative peritonitis. Risk factors for infection include young age, the absence of prophylactic antibiotics at catheter placement, spiking of dialysis bags, and the presence of a catheter exit-site or tunnel infection. Clinical symptoms at presentation are somewhat organism specific and can be objectively assessed with a Disease Severity Score. Whereas recommendations for empiric antibiotic therapy in children have been published by the International Society of Peritoneal Dialysis, epidemiologic data and antibiotic susceptibility data suggest that it may be desirable to take the patient- and center-specific history of microorganisms and their sensitivity patterns into account when prescribing initial therapy. The vast majority of patients are treated successfully and continue peritoneal dialysis, with the poorest outcome noted in patients with peritonitis secondary to Gram-negative organisms or fungi and in those with a relapsing infection

    Integrin Clustering Is Driven by Mechanical Resistance from the Glycocalyx and the Substrate

    Get PDF
    Integrins have emerged as key sensory molecules that translate chemical and physical cues from the extracellular matrix (ECM) into biochemical signals that regulate cell behavior. Integrins function by clustering into adhesion plaques, but the molecular mechanisms that drive integrin clustering in response to interaction with the ECM remain unclear. To explore how deformations in the cell-ECM interface influence integrin clustering, we developed a spatial-temporal simulation that integrates the micro-mechanics of the cell, glycocalyx, and ECM with a simple chemical model of integrin activation and ligand interaction. Due to mechanical coupling, we find that integrin-ligand interactions are highly cooperative, and this cooperativity is sufficient to drive integrin clustering even in the absence of cytoskeletal crosslinking or homotypic integrin-integrin interactions. The glycocalyx largely mediates this cooperativity and hence may be a key regulator of integrin function. Remarkably, integrin clustering in the model is naturally responsive to the chemical and physical properties of the ECM, including ligand density, matrix rigidity, and the chemical affinity of ligand for receptor. Consistent with experimental observations, we find that integrin clustering is robust on rigid substrates with high ligand density, but is impaired on substrates that are highly compliant or have low ligand density. We thus demonstrate how integrins themselves could function as sensory molecules that begin sensing matrix properties even before large multi-molecular adhesion complexes are assembled
    • …
    corecore