710 research outputs found

    Magnetohydrodynamic jets from different magnetic field configurations

    Full text link
    Using axisymmetric MHD simulations we investigate how the overall jet formation is affected by a variation in the disk magnetic flux profile and/or the existence of a central stellar magnetosphere. Our simulations evolve from an initial, hydrostatic equilibrium state in a force-free magnetic field configuration. We find a unique relation between the collimation degree and the disk wind magnetization power law exponent. The collimation degree decreases for steeper disk magnetic field profiles. Highly collimated outflows resulting from a flat profile tend to be unsteady. We further consider a magnetic field superposed of a stellar dipole and a disk field in parallel or anti-parallel alignment. Both stellar and disk wind may evolve in a pair of outflows, however, a reasonably strong disk wind component is essential for jet collimation. Strong flares may lead to a sudden change in mass flux by a factor two. We hypothesize that such flares may eventually trigger jet knots.Comment: 5 pages, 4 figures; proceedings from conference: Protostellar Jets in Context, held in Rhodes, July 7-12, 200

    Optimising Boltzmann codes for the Planck era

    Full text link
    High precision measurements of the Cosmic Microwave Background (CMB) anisotropies, as can be expected from the Planck satellite, will require high-accuracy theoretical predictions as well. One possible source of theoretical uncertainty is the numerical error in the output of the Boltzmann codes used to calculate angular power spectra. In this work, we carry out an extensive study of the numerical accuracy of the public Boltzmann code CAMB, and identify a set of parameters which determine the error of its output. We show that at the current default settings, the cosmological parameters extracted from data of future experiments like Planck can be biased by several tenths of a standard deviation for the six parameters of the standard Lambda-CDM model, and potentially more seriously for extended models. We perform an optimisation procedure that leads the code to achieve sufficient precision while at the same time keeping the computation time within reasonable limits. Our conclusion is that the contribution of numerical errors to the theoretical uncertainty of model predictions is well under control -- the main challenges for more accurate calculations of CMB spectra will be of an astrophysical nature instead.Comment: 13 pages, 4 figure

    The Axisymmetric Pulsar Magnetosphere

    Get PDF
    We present, for the first time, the structure of the axisymmetric force-free magnetosphere of an aligned rotating magnetic dipole, in the case in which there exists a sufficiently large charge density (whose origin we do not question) to satisfy the ideal MHD condition, Eâ‹…B=0{\bf E\cdot B}=0, everywhere. The unique distribution of electric current along the open magnetic field lines which is required for the solution to be continuous and smooth is obtained numerically. With the geometry of the field lines thus determined we compute the dynamics of the associated MHD wind. The main result is that the relativistic outflow contained in the magnetosphere is not accelerated to the extremely relativistic energies required for the flow to generate gamma rays. We expect that our solution will be useful as the starting point for detailed studies of pulsar magnetospheres under more general conditions, namely when either the force-free and/or the ideal MHD condition Eâ‹…B=0{\bf E\cdot B}=0 are not valid in the entire magnetosphere. Based on our solution, we consider that the most likely positions of such an occurrence are the polar cap, the crossings of the zero space charge surface by open field lines, and the return current boundary, but not the light cylinder.Comment: 15 pages AAS Latex, 5 postscript figure

    Magnetic interaction of jets and molecular clouds in NGC 4258

    Get PDF
    NGC 4258 is a well known spiral galaxy with a peculiar large scale jet flow detected in the radio and in H-alpha. Due to the special geometry of the galaxy, the jets emerge from the nuclear region through the galactic disk. Also the distribution of molecular gas looks different from that in other spiral galaxies: [12]CO(1-0)emission has only been detected in the center and along the jets and only up to distances of about 50 arcsec (1.8 kpc) from the nucleus. The reason for the CO concentration along the inner jets in NGC 4258 was not understood and is the motivation for the observations presented here. Using the IRAM interferometer, we mapped the [12]CO(1-0) emission of the central part of NGC 4258 along the nuclear jet direction in the inner 3 kpc. We detected two parallel CO ridges along a position angle of -25 degr with a total length of about 80 arcsec (2.8 kpc), separated by a CO-depleted funnel with a width of about 5 arcsec (175 pc). The H-alpha emission is more extended and broader than the CO emission with its maximum just in between the two CO ridges. In CO we see a peculiar velocity distribution in the iso-velocity map and p-v diagrams. We discuss different scenarios for an interpretation and present a model which can explain the observational results consistently. We propose here that the concentration of CO along the ridges is due to interaction of the rotating gas clouds with the jet's magnetic field by ambipolar diffusion. This magnetic interaction is thought to increase the time the molecular clouds reside near the jet thus leading to the quasi-static CO ridge

    Magnetospheric Accretion and Ejection of Matter in Resistive Magnetohydrodynamic Simulations

    Full text link
    The ejection of matter in the close vicinity of a young stellar object is investigated, treating the accretion disk as a gravitationally bound reservoir of matter. By solving the resistive MHD equations in 2D axisymmetry using our version of the Zeus-3D code with newly implemented resistivity, we study the effect of magnetic diffusivity in the magnetospheric accretion-ejection mechanism. Physical resistivity was included in the whole computational domain so that reconnection is enabled by the physical as well as the numerical resistivity. We show, for the first time, that quasi-stationary fast ejecta of matter, which we call {\em micro-ejections}, of small mass and angular momentum fluxes, can be launched from a purely resistive magnetosphere. They are produced by a combination of pressure gradient and magnetic forces, in presence of ongoing magnetic reconnection along the boundary layer between the star and the disk, where a current sheet is formed. Mass flux of micro-ejection increases with increasing magnetic field strength and stellar rotation rate, and is not dependent on the disk to corona density ratio and amount of resistivity.Comment: 18 pages, many revisions from previous version, accepted in Ap

    Particle acceleration close to the supermassive black hole horizon: the case of M87

    Full text link
    The radio galaxy M87 has recently been found to be a rapidly variable TeV emitting source. We analyze the implications of the observed TeV characteristics and show that it proves challenging to account for them within conventional acceleration and emission models. We discuss a new pulsar-type scenario for the origin of variable, very high energy (VHE) emission close to the central supermassive black hole and show that magneto-centrifugally accelerated electrons could efficiently Compton upscatter sub-mm ADAF disk photons to the TeV regime, leading to VHE characteristics close to the observed ones. This suggests, conversely, that VHE observations of highly under-luminous AGNs could provide an important diagnostic tool for probing the conditions prevalent in the inner accretion disk of these sources.Comment: 5 pages, one figure (typos corrected); based on presentation at "High Energy Phenomena in Relativistic Outflows", Dublin, Sept. 2007; accepted for publication in International Journal of Modern Physics

    Collimation of astrophysical jets - the role of the accretion disk magnetic field distribution

    Full text link
    We have applied axisymmetric MHD simulations to investigate the impact of the accretion disk magnetic flux profile on the jet collimation. Using the ZEUS-3D code modified for magnetic diffusivity, our simulations evolve from an initial hydrostatic equilibrium state in a force-free magnetic field. Considering a power law for the disk poloidal magnetic field profile Bp ~ r^{-mu} and for the disk wind density profile rho ~ r^{-mu_rho} we performed a systematic study over a wide parameter range mu and mu_rho. We find a degree of collimation (ratio of mass flow rates in axial and lateral direction) decreasing for steeper disk magnetic field profiles (increasing mu). Varying the total magnetic flux doesn't change the degree of jet collimation substantially, it only affects the time scale of outflow evolution and the terminal jet speed. As our major result we find a general relation between the collimation degree with the disk wind magnetization power law exponent. Outflows with high collimation degree resulting from a flat disk magnetic field profile tend to be unsteady, producing axially propagating knots as discussed earlier. Depending slightly on the inflow density profile this unsteady behavior sets in for mu < 0.4. We also performed simulations of jet formation with artificially enhanced decay of the toroidal magnetic field in order to investigate the idea of a purely "poloidal collimation" discussed in the literature. These outflows remain weakly collimated and propagate with lower velocity. Thanks to our large numerical grid size (7x14 AU for protostars), we may apply our results to recently observed hints of jet rotation (DG Tau) indicating a relatively flat disk magnetic field profile, mu ~ 0.5. In general, our results are applicable to both stellar and extragalactic sources of MHD jets.Comment: accepted by ApJ, high resolution version under www.mpia-hd.mpg.de/homes/fendt

    Formation of protostellar jets - effects of magnetic diffusion

    Get PDF
    We investigate the evolution of a disk wind into a collimated jet under the influence of magnetic diffusivity, assuming that the turbulent pattern in the disk will also enter the disk corona and the jet. Using the ZEUS-3D code in the axisymmetry option we solve the time-dependent resistive MHD equations for a model setup of a central star surrounded by an accretion disk. We find that the diffusive jets propagate slower into the ambient medium. Close to the star we find that a quasi stationary state evolves after several hundred (weak diffusion) or thousand (strong diffusion) disk rotations. Magnetic diffusivity affects the protostellar jet structure as follows. The jet poloidal magnetic field becomes de-collimated. The jet velocity increases with increasing diffusivity, while the degree of collimation for the hydrodynamic flow remains more or less the same. We suggest that the mass flux is a proper tracer for the degree of jet collimation and find indications of a critical value for the magnetic diffusivity above which the jet collimation is only weak.Comment: 16 pages, 12 figs, accepted by Astron. and Astrop

    Ultra-Relativistic Magneto-Hydro-Dynamic Jets in the context of Gamma Ray Bursts

    Full text link
    We present a detailed numerical study of the dynamics and evolution of ultrarelativistic magnetohydrodynamic jets in the black hole-disk system under extreme magnetization conditions. We find that Lorentz factors of up to 3000 are achieved and derived a modifiedMichel scaling (Gamma ~ sigma) which allows for a wide variation in the flow Lorentz factor. Pending contamination induced by mass-entrainment, the linear Michel scaling links modulations in the ultrarelativistic wind to variations in mass accretion in the disk for a given magnetization. The jet is asymptotically dominated by the toroidal magnetic field allowing for efficient collimation. We discuss our solutions (jets) in the context of Gamma ray bursts and describe the relevant features such as the high variability in the Lorentz factor and how high collimation angles (~ 0-5 degrees), or cylindrical jets, can be achieved. We isolate a jet instability mechanism we refer to as the "bottle-neck" instability which essentially relies on a high magnetization and a recollimation of the magnetic flux surfaces. The instability occurs at large radii where any dissipation of the magnetic energy into radiation would in principle result in an optically thin emission.Comment: 31 pages, 6 figures. Submitted to ApJ. Higher Quality figures at http://www.capca.ucalgary.ca/paper
    • …
    corecore