664 research outputs found

    The changing incentive structure of institutional asset managers: implications for financial markets.

    Get PDF
    This article presents the principal findings of the Working Group on Incentive Structures in Institutional Asset Management set up under the aegis of the Commitee on the Global Financial System (CGFS). These findings, which have recently been published in a report, aim to give the central bank community – and beyond that, the financial community – a better understanding of ongoing developments in the fund management industry and their potential implications for financial markets. The report, based on a comprehensive literature review and extensive interviews with market practitioners, has identified various features and trends in the industry with a potential effect on the functioning of financial markets. However, as many of these effects are at least partially offsetting, the lack of reliable empirical evidence has not allowed the working group to come to a clear-cut conclusion on the aggregate effect of these various features and trends at the current juncture. Still, one broad conclusion may be drawn from this report: ongoing and future developments in the fund management industry have the potential to change institutional behaviour in ways that can be important for financial markets. This relates to the general issue of preserving the diversity of investment behaviour, and partially results from the fact that parts of the institutional asset management industry have moved towards becoming a «commodity» industry offering investors more and more standardised investments products and approaches. Therefore, developments in the industry may require further attention by the financial community as a whole. More specifically, the report points to four broad areas where particular attention should be paid: risk management and disclosure, conflicts of interest, explicit and implicit barriers to market entry, and regulatory trade-offs.

    Radio emission of the Galactic X-rays binaries with relativistic jets

    Full text link
    Variable non-thermal radio emission from Galactic X-ray binaries is a trace of relativistic jets, created near accretion disks. The spectral characteristics of a lot of radio flares in the X-ray binaries with jets (RJXB) is discussed in this report. We carried out several long daily monitoring programs with the RATAN-600 radio telescope of the sources: SS433, Cyg X-3, LSI+61o303, GRS 1915+10 and some others. We also reviewed some data from the GBI monitoring program at two frequencies and hard X-ray BATSE (20-100 keV) and soft X-ray RTXE (2-12 keV) ASM data. We confirmed that flaring radio emission of Cyg X-3 correlated with hard and anti-correlated with soft X-ray emission during the strong flare (>Jy)inMay1997.DuringtwoorbitalperiodsweinvestigatedradiolightcurvesoftheremarkableX−binaryLSI+61o303.Twoflaringeventsnearaphase0.6ofthe26.5−dayorbitalperiodhavebeendetectedforfirsttimeatfourfrequenciessimultaneously.PowerfulflaringeventsofSS433weredetectedatsixfrequenciesinMay1996andinMay1999.Thedecayoftheflareisexactlyfittedbyanexponentiallawandtherateofthedecay Jy) in May 1997. During two orbital periods we investigated radio light curves of the remarkable X-binary LSI+61o303. Two flaring events near a phase 0.6 of the 26.5-day orbital period have been detected for first time at four frequencies simultaneously. Powerful flaring events of SS433 were detected at six frequencies in May 1996 and in May 1999. The decay of the flare is exactly fitted by an exponential law and the rate of the decay \tau$ depends upon frequency as tau \propto \nu^{-0.4} in the first flare and does not depend upon frequency in the second flare, and is equal to \tau=6+-1 days at frequencies from 0.96 to 21.7 GHz in the last flare in May 1999. Many flaring RJXB show two, exponential and power, laws of flare decay. Moreover, these different laws could be present in one or several flares and commonly flare decays are faster at a higher frequency. The decay law seems to change because of geometric form of the conical hollow jets. The synchrotron and inverse Compton losses could explain general frequency dependences in flare evolution. In conclusion we summarized the general radio properties of RJXB.Comment: 10 pages, LaTeX, 14 Postscript figures, talk given at the Gamov Memorial International Conference (GMIC'99) "Early Universe: Cosmological Problems and Instrumental Technologies" in St.Petersburg, 23-27 August, 1999, to appear in Astron. Astrophys. Trans., 200

    LOFT as a discovery machine for jetted Tidal Disruption Events

    Get PDF
    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of jetted tidal disruption events. For a summary, we refer to the paper.Comment: White Paper in Support of the Mission Concept of the Large Observatory for X-ray Timin

    A transient relativistic radio jet from Cygnus X-1

    Full text link
    We report the first observation of a transient relativistic jet from the canonical black hole candidate, Cygnus X-1, obtained with the Multi-Element Radio-Linked Interferometer Network (MERLIN). The jet was observed in only one of six epochs of MERLIN imaging of the source during a phase of repeated X-ray spectral transitions in 2004 Jan--Feb, and this epoch corresponded to the softest 1.5-12 keV X-ray spectrum. With only a single epoch revealing the jet, we cannot formally constrain its velocity. Nevertheless, several lines of reasoning suggest that the jet was probably launched 0.5-4.0 days before this brightening, corresponding to projected velocities of 0.2c < v_app < 1.6c, and an intrinsic velocity of > 0.3c. We also report the occurrence of a major radio flare from Cyg X-1, reaching a flux density of ~120 mJy at 15 GHz, and yet not associated with any resolvable radio emission, despite a concerted effort with MERLIN. We discuss the resolved jet in terms of the recently proposed 'unified model' for the disc-jet coupling in black hole X-ray binaries, and tentatively identify the 'jet line' for Cyg X-1. The source is consistent with the model in the sense that a steady jet appears to persist initially when the X-ray spectrum starts softening, and that once the spectral softening is complete the core radio emission is suppressed and transient ejecta / shock observed. However, there are some anomalies, and Cyg X-1 clearly does not behave like a normal black hole transient in progressing to the canonical soft / thermal state once the ejection event has happened.Comment: Accepted for publication in MNRA

    Studying the X-ray hysteresis in GX 339-4: the disc and iron line over one decade

    Full text link
    We report on a comprehensive and consistent investigation into the X-ray emission from GX 339-4. All public observations in the 11 year RXTE archive were analysed. Three different types of model - single powerlaw, broken powerlaw and a disc + powerlaw - were fitted to investigate the evolution of the disc, along with a fixed gaussian component at 6.4 keV to investigate any iron line in the spectrum. We show that the relative variation in flux and X-ray colour between the two best sampled outbursts are very similar. The decay of the disc temperature during the outburst is clearly seen in the soft state. The expected decay is S_Disc \propto T^4; we measure T^4.75\pm0.23. This implies that the inner disc radius is approximately constant in the soft state. We also show a significant anti-correlation between the iron line significant width and the X-ray flux in the soft state while in the hard state the EW is independent of the flux. This results in hysteresis in the relation between X-ray flux and both line flux and EW. To compare the X-ray binary outburst to the behaviour seen in AGN, we construct a Disc Fraction Luminosity Diagram for GX 339-4, the first for an X-ray binary. The shape qualitatively matches that produced for AGN. Linking this with the radio emission from GX 339-4 the change in radio spectrum between the disc and power-law dominated states is clearly visible.Comment: Accepted for publication in MNRAS, 20 pages, 17 figures. For high-res version see http://www.astro.soton.ac.uk/~r.j.dunn/publications.htm

    The radio spectrum of a quiescent stellar mass black hole

    Full text link
    Observations of V404 Cyg performed with the Westerbork Synthesis Radio Telescope at four frequencies, over the interval 1.4-8.4 GHz, have provided us with the first broadband radio spectrum of a `quiescent' stellar mass black hole. The measured mean flux density is of 0.35 mJy, with a spectral index alpha=+ 0.09\pm0.19$ (such that S_nu \propto nu^{alpha}). Synchrotron emission from an inhomogeneous partially self-absorbed outflow of plasma accounts for the flat/inverted radio spectrum, in analogy with hard state black hole X-ray binaries, indicating that a steady jet is being produced between a few 10^{-6} and a few per cent of the Eddington X-ray luminosity.Comment: accepted for publication in MNRA

    High-energy gamma-ray observations of the accreting black hole V404 Cygni during its June 2015 outburst

    Get PDF
    We report on Fermi/Large Area Telescope observations of the accreting black hole low-mass X-ray binary V404 Cygni during its outburst in June-July 2015. Detailed analyses reveal a possible excess of γ\gamma-ray emission on 26 June 2015, with a very soft spectrum above 100100 MeV, at a position consistent with the direction of V404 Cyg (within the 95%95\% confidence region and a chance probability of 4×10−44 \times 10^{-4}). This emission cannot be associated with any previously-known Fermi source. Its temporal coincidence with the brightest radio and hard X-ray flare in the lightcurve of V404 Cyg, at the end of the main active phase of its outburst, strengthens the association with V404 Cyg. If the γ\gamma-ray emission is associated with V404 Cyg, the simultaneous detection of 511 511\,keV annihilation emission by INTEGRAL requires that the high-energy γ\gamma rays originate away from the corona, possibly in a Blandford-Znajek jet. The data give support to models involving a magnetically-arrested disk where a bright γ\gamma-ray jet can re-form after the occurrence of a major transient ejection seen in the radio.Comment: 5 pages, 3 figures, accepted for publication in MNRA

    Multiwavelength Observations of GX 339-4 in 1996. I. Daily Light Curves and X-ray and Gamma-Ray Spectroscopy

    Get PDF
    As part of our multiwavelength campaign of GX 339-4 observations in 1996 we present our radio, X-ray, and gamma-ray observations made in July, when the source was in a hard state (= soft X-ray low state). The radio observations were made at the time when there was a possible radio jet. We show that the radio spectrum was flat and significantly variable, and that the radio spectral shape and amplitude at this time were not anomalous for this source. Daily light curves from our pointed observation July 9-23 using OSSE, from BATSE, and from the ASM on RXTE also show that there was no significant change in the X- and gamma-ray flux or hardness during the time the possible radio jet-like feature was seen. The higher energy portion of our pointed RXTE observation made July 26 can be equally well fit using simple power law times exponential (PLE) and Sunyaev-Titarchuk (ST) functions. An additional soft component is required, as well as a broad emission feature centered on 6.4 keV. This may be an iron line that is broadened by orbital Doppler motions and/or scattering off a hot medium. Its equivalent width is 600 eV. Our simplistic continuum fitting does not require an extra reflection component. Both a PLE and a ST model also fit our OSSE spectrum on its own. Although the observations are not quite simultaneous, combining the RXTE and CGRO spectra we find that the PLE model easily fits the joint spectrum. However, the ST model drops off too rapidly with increasing energies to give an acceptable joint fit.Comment: Submitted to Astrophysical Journal. 25 pages. 11 figure

    Discovery of extended radio emission in the young cluster Wd1

    Get PDF
    We present 10 micron, ISO-SWS and Australia Telescope Compact Array observations of the region in the cluster Wd1 in Ara centred on the B[e] star Ara C. An ISO-SWS spectrum reveals emission from highly ionised species in the vicinity of the star, suggesting a secondary source of excitation in the region. We find strong radio emission at both 3.5cm and 6.3cm, with a total spatial extent of over 20 arcsec. The emission is found to be concentrated in two discrete structures, separated by 14''. The westerly source is resolved, with a spectral index indicative of thermal emission. The easterly source is clearly extended and nonthermal (synchrotron) in nature. Positionally, the B[e] star is found to coincide with the more compact radio source, while the southerly lobe of the extended source is coincident with Ara A, an M2 I star. Observation of the region at 10micron reveals strong emission with an almost identical spatial distribution to the radio emission. Ara C is found to have an extreme radio luminosity in comparison to prior radio observations of hot stars such as O and B supergiants and Wolf-Rayet stars, given the estimated distance to the cluster. An origin in a detatched shell of material around the central star is therefore suggested; however given the spatial extent of the emission, such a shell must be relatively young (10^3 yrs). The extended non thermal emission associated with the M star Ara A is unexpected; to the best of our knowledge this is a unique phenomenon. SAX (2-10keV) observations show no evidence of X-ray emission, which might be expected if a compact companion were present.Comment: 5 pages including encapsulated figures, figure 3 separate. Accepted for MNRAS pink page

    The Cosmic Battery and the Inner Edge of the Accretion Disk

    Full text link
    The Poynting-Robertson Cosmic Battery proposes that the innermost part of the accretion disk around a black hole is threaded by a large scale dipolar magnetic field generated in situ, and that the return part of the field diffuses outward through the accretion disk. This is different from the scenario that the field originates at large distances and is carried inward by the accretion flow. In view of the importance of large scale magnetic fields in regulating the processes of accretion and outflows, we study the stability of the inner edge of a magnetized disk in general relativity when the distribution of the magnetic field is the one predicted by the Poynting-Robertson Cosmic Battery. We found that as the field grows, the inner edge of the disk gradually moves outward. In a fast spinning black hole with a>0.8M the inner edge moves back in towards the black hole horizon as the field grows beyond some threshold value. In all cases, the inner part of the disk undergoes a dramatic structural change as the field approaches equipartition.Comment: 7 pages, 3 figures, accepted for publication in Monthly Notices of the RA
    • 

    corecore