78 research outputs found
Investigation and study of a multi-aperture antenna system final report, 1 jan. - 1 apr. 1964
Multiple aperture adaptive antenna system for telemetry reception from remote space vehicle
Exchange Effects in the Invar Hardening: as a test case
An increase of the critical resolved shear stress of Invar alloys (Invar
hardening) with a lowering temperature is explained. The effect is caused by a
growth of the exchange interaction between dangling -electron states of
dislocation cores and paramagnetic obstacles (e.g., Ni atoms in FeNi alloys)
which occurs below the Curie temperature. The spins of the two electrons align
along the magnetization due to the exchange interaction with the surrounding
atoms of the ferromagnetic. The exchange interaction between the dislocations
and obstacles is enhanced in Invars due to a strong growth of the magnetic
moments of atoms under the action of elastic strains near the dislocation
cores. Parameters characterizing the exchange interaction are determined for
the case of the FeNi Invar. The influence of the internal
magnetic field on the dislocation detachment from the obstacles is taken into
account. The obtained temperature dependence of the critical resolved shear
stress in the FeNi Invar agrees well with the available
experimental data. Experiments facilitating a further check of the theoretical
model are suggested.Comment: 8 pages, 2 figure
Drug use changes at the individual level : Results from a longitudinal, multisite survey in young europeans frequenting the nightlife scene
Background: Monitoring emerging trends in the increasingly dynamic European drug market is vital; however, information on change at the individual level is scarce. In the current study, we investigated changes in drug use over 12 months in European nightlife attendees. Method: In this longitudinal online survey, changes in substances used, use frequency in continued users, and relative initiation of use at follow-up were assessed for 20 different substances. To take part, participants had to be aged 18–34 years; be from Belgium, Italy, the Netherlands, Sweden, or the UK; and have attended at least 6 electronic music events in the past 12 months at baseline. Of 8,045 volunteers at baseline, 2,897 completed the survey at both time points (36% follow-up rate), in 2017 and 2018. Results: The number of people using ketamine increased by 21% (p < 0.001), and logarithmized frequency of use in those continuing use increased by 15% (p < 0.001; 95% CI: 0.07–0.23). 4-Fluoroamphetamine use decreased by 27% (p < 0.001), and logarithmized frequency of use in continuing users decreased by 15% (p < 0.001, 95% CI: −0.48 to −0.23). The drugs with the greatest proportion of relative initiation at follow-up were synthetic cannabinoids (73%, N = 30), mephedrone (44%, N = 18), alkyl nitrites (42%, N = 147), synthetic dissociatives (41%, N = 15), and prescription opioids (40%, N = 48). Conclusions: In this European nightlife sample, ketamine was found to have the biggest increase in the past 12 months, which occurred alongside an increase in frequency of use in continuing users. The patterns of uptake and discontinuation of alkyl nitrates, novel psychoactive substances, and prescription opioids provide new information that has not been captured by existing cross-sectional surveys. These findings demonstrate the importance of longitudinal assessments of drug use and highlight the dynamic nature of the European drug landscape
Modulation of Bacterial Type III Secretion System by a Spermidine Transporter Dependent Signaling Pathway
10.1371/journal.pone.0001291PLoS ONE212
Differential Attraction of Malaria Mosquitoes to Volatile Blends Produced by Human Skin Bacteria
The malaria mosquito Anopheles gambiae sensu stricto is mainly guided by human odour components to find its blood host. Skin bacteria play an important role in the production of human body odour and when grown in vitro, skin bacteria produce volatiles that are attractive to A. gambiae. The role of single skin bacterial species in the production of volatiles that mediate the host-seeking behaviour of mosquitoes has remained largely unknown and is the subject of the present study. Headspace samples were taken to identify volatiles that mediate this behaviour. These volatiles could be used as mosquito attractants or repellents. Five commonly occurring species of skin bacteria were tested in an olfactometer for the production of volatiles that attract A. gambiae. Odour blends produced by some bacterial species were more attractive than blends produced by other species. In contrast to odours from the other bacterial species tested, odours produced by Pseudomonas aeruginosa were not attractive to A. gambiae. Headspace analysis of bacterial volatiles in combination with behavioural assays led to the identification of six compounds that elicited a behavioural effect in A. gambiae. Our results provide, to our knowledge, the first evidence for a role of selected bacterial species, common on the human skin, in determining the attractiveness of humans to malaria mosquitoes. This information will be used in the further development of a blend of semiochemicals for the manipulation of mosquito behaviour
Bacteria Modulate the CD8+ T Cell Epitope Repertoire of Host Cytosol-Exposed Proteins to Manipulate the Host Immune Response
The main adaptive immune response to bacteria is mediated by B cells and CD4+ T-cells. However, some bacterial proteins reach the cytosol of host cells and are exposed to the host CD8+ T-cells response. Both gram-negative and gram-positive bacteria can translocate proteins to the cytosol through type III and IV secretion and ESX-1 systems, respectively. The translocated proteins are often essential for the bacterium survival. Once injected, these proteins can be degraded and presented on MHC-I molecules to CD8+ T-cells. The CD8+ T-cells, in turn, can induce cell death and destroy the bacteria's habitat. In viruses, escape mutations arise to avoid this detection. The accumulation of escape mutations in bacteria has never been systematically studied. We show for the first time that such mutations are systematically present in most bacteria tested. We combine multiple bioinformatic algorithms to compute CD8+ T-cell epitope libraries of bacteria with secretion systems that translocate proteins to the host cytosol. In all bacteria tested, proteins not translocated to the cytosol show no escape mutations in their CD8+ T-cell epitopes. However, proteins translocated to the cytosol show clear escape mutations and have low epitope densities for most tested HLA alleles. The low epitope densities suggest that bacteria, like viruses, are evolutionarily selected to ensure their survival in the presence of CD8+ T-cells. In contrast with most other translocated proteins examined, Pseudomonas aeruginosa's ExoU, which ultimately induces host cell death, was found to have high epitope density. This finding suggests a novel mechanism for the manipulation of CD8+ T-cells by pathogens. The ExoU effector may have evolved to maintain high epitope density enabling it to efficiently induce CD8+ T-cell mediated cell death. These results were tested using multiple epitope prediction algorithms, and were found to be consistent for most proteins tested
Pseudomonas aeruginosa Population Structure Revisited
At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P. aeruginosa “core lineage” and typically exhibited the exoS+/exoU− genotype and group B oprL and oprD alleles. This is to our knowledge the first report of an MST analysis conducted on a polyphasic data set
Population Structure of Pseudomonas aeruginosa from Five Mediterranean Countries: Evidence for Frequent Recombination and Epidemic Occurrence of CC235
Several studies in recent years have provided evidence that Pseudomonas aeruginosa has a non-clonal population structure punctuated by highly successful epidemic clones or clonal complexes. The role of recombination in the diversification of P. aeruginosa clones has been suggested, but not yet demonstrated using multi-locus sequence typing (MLST). Isolates of P. aeruginosa from five Mediterranean countries (n = 141) were subjected to pulsed-field gel electrophoresis (PFGE), serotyping and PCR targeting the virulence genes exoS and exoU. The occurrence of multi-resistance (≥3 antipseudomonal drugs) was analyzed with disk diffusion according to EUCAST. MLST was performed on a subset of strains (n = 110) most of them had a distinct PFGE variant. MLST data were analyzed with Bionumerics 6.0, using minimal spanning tree (MST) as well as eBURST. Measurement of clonality was assessed by the standardized index of association (IAS). Evidence of recombination was estimated by ClonalFrame as well as SplitsTree4.0. The MST analysis connected 70 sequence types, among which ST235 was by far the most common. ST235 was very frequently associated with the O11 serotype, and frequently displayed multi-resistance and the virulence genotype exoS−/exoU+. ClonalFrame linked several groups previously identified by eBURST and MST, and provided insight to the evolutionary events occurring in the population; the recombination/mutation ratio was found to be 8.4. A Neighbor-Net analysis based on the concatenated sequences revealed a complex network, providing evidence of frequent recombination. The index of association when all the strains were considered indicated a freely recombining population. P. aeruginosa isolates from the Mediterranean countries display an epidemic population structure, particularly dominated by ST235-O11, which has earlier also been coupled to the spread of ß-lactamases in many countries
- …