851 research outputs found

    Public Relations

    Get PDF

    Genetic approaches to understanding the causes of stuttering

    Get PDF
    Stuttering is a common but poorly understood speech disorder. Evidence accumulated over the past several decades has indicated that genetic factors are involved, and genetic linkage studies have begun to identify specific chromosomal loci at which causative genes are likely to reside. A detailed investigation of one such region on chromosome 12 has identified mutations in the GNPTAB gene that are associated with stuttering in large families and in the general population. Subsequent studies identified mutations in the functionally related GNPTG and NAGPA genes. Mutations in these genes disrupt the lysosomal targeting pathway that generates the Mannose 6-phosphate signal, which directs a diverse group of enzymes to their target location in the lysosome of the cell. While mutations in these three genes can be identified in less than 10% of cases of familial stuttering, this knowledge allows a variety of new studies that can help identify the neuropathology that underlies this disorder

    VEZF1 elements mediate protection from DNA methylation

    Get PDF
    There is growing consensus that genome organization and long-range gene regulation involves partitioning of the genome into domains of distinct epigenetic chromatin states. Chromatin insulator or barrier elements are key components of these processes as they can establish boundaries between chromatin states. The ability of elements such as the paradigm β-globin HS4 insulator to block the range of enhancers or the spread of repressive histone modifications is well established. Here we have addressed the hypothesis that a barrier element in vertebrates should be capable of defending a gene from silencing by DNA methylation. Using an established stable reporter gene system, we find that HS4 acts specifically to protect a gene promoter from de novo DNA methylation. Notably, protection from methylation can occur in the absence of histone acetylation or transcription. There is a division of labor at HS4; the sequences that mediate protection from methylation are separable from those that mediate CTCF-dependent enhancer blocking and USF-dependent histone modification recruitment. The zinc finger protein VEZF1 was purified as the factor that specifically interacts with the methylation protection elements. VEZF1 is a candidate CpG island protection factor as the G-rich sequences bound by VEZF1 are frequently found at CpG island promoters. Indeed, we show that VEZF1 elements are sufficient to mediate demethylation and protection of the APRT CpG island promoter from DNA methylation. We propose that many barrier elements in vertebrates will prevent DNA methylation in addition to blocking the propagation of repressive histone modifications, as either process is sufficient to direct the establishment of an epigenetically stable silent chromatin stat

    Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution

    Get PDF
    It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing

    Heritability of specific language impairment depends on diagnostic criteria

    Get PDF
    Heritability estimates for specific language impairment (SLI) have been inconsistent. Four twin studies reported heritability of 0.5 or more, but a recent report from the Twins Early Development Study found negligible genetic influence in 4-year-olds. We considered whether the method of ascertainment influenced results and found substantially higher heritability if SLI was defined in terms of referral to speech and language pathology services than if defined by language test scores. Further analysis showed that presence of speech difficulties played a major role in determining whether a child had contact with services. Childhood language disorders that are identified by population screening are likely to have a different phenotype and different etiology from clinically referred cases. Genetic studies are more likely to find high heritability if they focus on cases who have speech difficulties and who have been referred for intervention

    Business-friendly contracting : how simplification and visualization can help bring it to practice

    Get PDF
    One thesis of this book is that the legal function within businesses will shift from a paradigm of security to one of opportunity. This chapter embraces that likelihood in the context of business contracting, where voices calling for a major shift are starting to surface. It explores how contracts can be used to reach better outcomes and relationships, not just safer ones. It introduces the concept of business-friendly contracting, highlighting the need for contracts to be seen as business tools rather than exclusively as legal tools, and working as business enablers rather than obstacles. By changing the design of contracts and the ways in which those contracts are communicated—through simplification and visualization, for example—legal and business operations can be better integrated. Contracts can then be more useful to business, and contract provisions can actually become more secure by becoming easier to negotiate and implement.fi=vertaisarvioitu|en=peerReviewed

    Long-term treatment with lanthanum carbonate reduces mineral and bone abnormalities in rats with chronic renal failure

    Get PDF
    Background. Lanthanum carbonate (FOSRENOL®, Shire Pharmaceuticals) is an effective non-calcium, non-resin phosphate binder for the treatment of hyperphosphataemia in patients with chronic kidney disease (CKD). In this study, we used a rat model of chronic renal failure (CRF) to examine the long-term effects of controlling serum phosphorus with lanthanum carbonate treatment on the biochemical and bone abnormalities associated with CKD–mineral and bone disorder (CKD–MBD)

    Fresh-blood-free diet for rearing malaria mosquito vectors

    Get PDF
    Mosquito breeding depends on the supply of fresh vertebrate blood, a major bottleneck for large-scale production of Anopheles spp. Feeding alternatives to fresh blood are thus a priority for research, outdoor large-cage trials and control interventions. Several artificial meal compositions were tested and Anopheles oogenesis, egg laying and development into the next generation of adult mosquitoes were followed. We identified blood-substitute-diets that supported ovarian development, egg maturation and fertility as well as, low progeny larval mortality, and normal development of offspring into adult mosquitoes. The formulated diet is an effective artificial meal, free of fresh blood that mimics a vertebrate blood meal and represents an important advance for the sustainability of Anopheles mosquito rearing in captivity.Agência financiadora / Número do subsídio Bill and Melinda Gates Foundation OPP1138841 Fundacao para a Ciencia e Tecnologia GHTM - UID/Multi/04413/201 CCMAR - UID/Multi/04326/2013 UID/Multi/04326/2013 RF SFRH/BPD/89811/2012 FAPEAM, Brazil 19716.UNI472.2459.20022014info:eu-repo/semantics/publishedVersio

    Simian Varicella Virus Infection of Rhesus Macaques Recapitulates Essential Features of Varicella Zoster Virus Infection in Humans

    Get PDF
    Simian varicella virus (SVV), the etiologic agent of naturally occurring varicella in primates, is genetically and antigenically closely related to human varicella zoster virus (VZV). Early attempts to develop a model of VZV pathogenesis and latency in nonhuman primates (NHP) resulted in persistent infection. More recent models successfully produced latency; however, only a minority of monkeys became viremic and seroconverted. Thus, previous NHP models were not ideally suited to analyze the immune response to SVV during acute infection and the transition to latency. Here, we show for the first time that intrabronchial inoculation of rhesus macaques with SVV closely mimics naturally occurring varicella (chickenpox) in humans. Infected monkeys developed varicella and viremia that resolved 21 days after infection. Months later, viral DNA was detected only in ganglia and not in non-ganglionic tissues. Like VZV latency in human ganglia, transcripts corresponding to SVV ORFs 21, 62, 63 and 66, but not ORF 40, were detected by RT-PCR. In addition, as described for VZV, SVV ORF 63 protein was detected in the cytoplasm of neurons in latently infected monkey ganglia by immunohistochemistry. We also present the first in depth analysis of the immune response to SVV. Infected animals produced a strong humoral and cell-mediated immune response to SVV, as assessed by immunohistology, serology and flow cytometry. Intrabronchial inoculation of rhesus macaques with SVV provides a novel model to analyze viral and immunological mechanisms of VZV latency and reactivation
    corecore