4,137 research outputs found

    The field inside a random distribution of parallel dipoles

    Full text link
    We determine the probability distribution for the field inside a random uniform distribution of electric or magnetic dipoles. For parallel dipoles, simulations and an analytical derivation show that although the average contribution from any spherical shell around the probe position vanishes, the Levy stable distribution of the field is symmetric around a non-vanishing field amplitude. In addition we show how omission of contributions from a small volume around the probe leads to a field distribution with a vanishing mean, which, in the limit of vanishing excluded volume, converges to the shifted distribution.Comment: RevTeX, 4 pages, 3 figures. Submitted to Phys. Rev. Let

    Analytical Solution to Transport in Brownian Ratchets via Gambler's Ruin Model

    Full text link
    We present an analogy between the classic Gambler's Ruin problem and the thermally-activated dynamics in periodic Brownian ratchets. By considering each periodic unit of the ratchet as a site chain, we calculated the transition probabilities and mean first passage time for transitions between energy minima of adjacent units. We consider the specific case of Brownian ratchets driven by Markov dichotomous noise. The explicit solution for the current is derived for any arbitrary temperature, and is verified numerically by Langevin simulations. The conditions for vanishing current and current reversal in the ratchet are obtained and discussed.Comment: 4 pages, 3 figure

    Distance traveled by random walkers before absorption in a random medium

    Full text link
    We consider the penetration length ll of random walkers diffusing in a medium of perfect or imperfect absorbers of number density ρ\rho. We solve this problem on a lattice and in the continuum in all dimensions DD, by means of a mean-field renormalization group. For a homogeneous system in D>2D>2, we find that lmax(ξ,ρ1/2)l\sim \max(\xi,\rho^{-1/2}), where ξ\xi is the absorber density correlation length. The cases of D=1 and D=2 are also treated. In the presence of long-range correlations, we estimate the temporal decay of the density of random walkers not yet absorbed. These results are illustrated by exactly solvable toy models, and extensive numerical simulations on directed percolation, where the absorbers are the active sites. Finally, we discuss the implications of our results for diffusion limited aggregation (DLA), and we propose a more effective method to measure ll in DLA clusters.Comment: Final version: also considers the case of imperfect absorber

    Model for Folding and Aggregation in RNA Secondary Structures

    Get PDF
    We study the statistical mechanics of RNA secondary structures designed to have an attraction between two different types of structures as a model system for heteropolymer aggregation. The competition between the branching entropy of the secondary structure and the energy gained by pairing drives the RNA to undergo a `temperature independent' second order phase transition from a molten to an aggregated phase'. The aggregated phase thus obtained has a macroscopically large number of contacts between different RNAs. The partition function scaling exponent for this phase is \theta ~ 1/2 and the crossover exponent of the phase transition is \nu ~ 5/3. The relevance of these calculations to the aggregation of biological molecules is discussed.Comment: Revtex, 4 pages; 3 Figures; Final published versio

    Transport in a Levy ratchet: Group velocity and distribution spread

    Full text link
    We consider the motion of an overdamped particle in a periodic potential lacking spatial symmetry under the influence of symmetric L\'evy noise, being a minimal setup for a ``L\'evy ratchet.'' Due to the non-thermal character of the L\'evy noise, the particle exhibits a motion with a preferred direction even in the absence of whatever additional time-dependent forces. The examination of the L\'evy ratchet has to be based on the characteristics of directionality which are different from typically used measures like mean current and the dispersion of particles' positions, since these get inappropriate when the moments of the noise diverge. To overcome this problem, we discuss robust measures of directionality of transport like the position of the median of the particles displacements' distribution characterizing the group velocity, and the interquantile distance giving the measure of the distributions' width. Moreover, we analyze the behavior of splitting probabilities for leaving an interval of a given length unveiling qualitative differences between the noises with L\'evy indices below and above unity. Finally, we inspect the problem of the first escape from an interval of given length revealing independence of exit times on the structure of the potential.Comment: 9 pages, 12 figure

    Fluctuations of 1/f1/f noise and the low frequency cutoff paradox

    Full text link
    Recent experiments on blinking quantum dots and weak turbulence in liquid crystals reveal the fundamental connection between 1/f1/f noise and power law intermittency. The non-stationarity of the process implies that the power spectrum is random -- a manifestation of weak ergodicity breaking. Here we obtain the universal distribution of the power spectrum, which can be used to identify intermittency as the source of the noise. We solve an outstanding paradox on the non integrability of 1/f1/f noise and the violation of Parseval's theorem. We explain why there is no physical low frequency cutoff and therefore cannot be found in experiments.Comment: 5 pages, 2 figures, supplementary material (4 pages

    Anomalous biased diffusion in a randomly layered medium

    Full text link
    We present analytical results for the biased diffusion of particles moving under a constant force in a randomly layered medium. The influence of this medium on the particle dynamics is modeled by a piecewise constant random force. The long-time behavior of the particle position is studied in the frame of a continuous-time random walk on a semi-infinite one-dimensional lattice. We formulate the conditions for anomalous diffusion, derive the diffusion laws and analyze their dependence on the particle mass and the distribution of the random force.Comment: 19 pages, 1 figur

    Spatiotemporally Complete Condensation in a Non-Poissonian Exclusion Process

    Get PDF
    We investigate a non-Poissonian version of the asymmetric simple exclusion process, motivated by the observation that coarse-graining the interactions between particles in complex systems generically leads to a stochastic process with a non-Markovian (history-dependent) character. We characterize a large family of one-dimensional hopping processes using a waiting-time distribution for individual particle hops. We find that when its variance is infinite, a real-space condensate forms that is complete in space (involves all particles) and time (exists at almost any given instant) in the thermodynamic limit. The mechanism for the onset and stability of the condensate are both rather subtle, and depends on the microscopic dynamics subsequent to a failed particle hop attempts.Comment: 5 pages, 5 figures. Version 2 to appear in PR

    Power-law random walks

    Full text link
    We present some new results about the distribution of a random walk whose independent steps follow a qq-Gaussian distribution with exponent 11q;qR\frac{1}{1-q}; q \in \mathbb{R}. In the case q>1q>1 we show that a stochastic representation of the point reached after nn steps of the walk can be expressed explicitly for all nn. In the case q<1,q<1, we show that the random walk can be interpreted as a projection of an isotropic random walk, i.e. a random walk with fixed length steps and uniformly distributed directions.Comment: 5 pages, 4 figure
    corecore