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Spatiotemporally Complete Condensation in a Non-Poissonian Exclusion Process
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We investigate a non-Poissonian version of the asymmetric simple exclusion process, motivated by the
observation that coarse graining the interactions between particles in complex systems generically leads to
a stochastic process with a non-Markovian (history-dependent) character. We characterize a large family of
one-dimensional hopping processes using a waiting-time distribution for individual particle hops. We find
that when its variance is infinite, a real-space condensate forms that is complete in space (involves all
particles) and time (exists at almost any given instant) in the thermodynamic limit. The mechanism for the
onset and stability of the condensate is rather subtle and depends on the microscopic dynamics subsequent
to a failed particle hop attempt.
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When modeling complex interacting systems that are out
of equilibrium, it is customary within the statistical physics
community [1–6] to couch their dynamics in terms of
Poisson processes. That is, given the current state of the
system, a transition to a new state is assumed to occur at a
constant rate. There are, however, situations where this
does not accurately reflect reality. For example, in stochas-
tic models of infectious diseases [7], the recovery rate of an
individual may peak at some characteristic infection time
[8,9]. Likewise, each step of a motor protein can be viewed
as the consequence of a sequence of internal processes (see,
e.g., Refs. [10–12]), which leads to a non-Poissonian
hopping dynamics. Indeed, whenever a stochastic dynam-
ics is obtained by coarse graining a more complete
description, Poisson processes will arise as an exception
rather than the rule.
The most basic interaction between stochastic processes is

to prevent events from occurring, e.g., an infected agent
inhibiting the recovery of another, or one motor protein
blocking another frommoving. A fundamental question then
arises, How do the microscopic consequences of a blocked
transition affect themacroscopic properties of the system?For
Poisson processes the answer is clear: whenever a transition
can occur, it occurs at a constant rate. By contrast, the answer
for non-Poissonian processes is unclear due to limited ana-
lytical techniques for analyzing interacting non-Markovian
systems. Consequently, these have rarely been studied by
statistical physicists (Ref. [13] is a notable exception).
Here we make progress towards an answer in the context

of the asymmetric simple exclusion process (ASEP) on a
ring [14,15], in which hard-core particles hop in a preferred
direction on a (periodic) one-dimensional lattice. The
ASEP and its variants underpin many applications of
interest, e.g., biopolymerization [16], traffic flow [4],
and molecular motors [6]. When formulated as Poisson
processes, their stationary states are well characterized,
which has led to a deep understanding of such

nonequilibrium effects as phase transitions and spontane-
ous symmetry breaking [15]. Most pertinently, the sta-
tionary state of the Poissonian ASEP on a ring is wholly
unremarkable: all microscopic configurations are equally
likely and the macrostate is a fluid (see, e.g., Refs. [6,14]).
Here, we report that in a non-Poissonian ASEP, where

the distribution of times between particle hop attempts has
an infinite variance, the stationary state changes dramati-
cally to reveal a distinctive condensation phenomenon. In
this state, all particles coalesce into a single solid block at
almost all times: the condensation is complete not just in
space [17,18] but also in time. This condensate forms
through an ageing process whereby successive particles are
immobile for increasing lengths of time. This differs from
the more usual real-space condensation seen in zero-range
processes which arises through a current balance between
the condensate and the background fluid [19]. It is also
distinct from the condensate previously seen in the ASEP
with disordered hop rates [20,21] in that it is immobile at
almost all times. As we discuss below, our main analytical
tool for understanding the subtle properties of the con-
densate is to integrate out failed hop attempts. This
approach delivers an accelerated simulation method for
interacting non-Poissonian systems that may generalize to
related model systems.
We begin by defining the non-Poissonian ASEP. It

comprises N particles on a one-dimensional lattice of L
sites with periodic boundary conditions, with at most one
particle on any given site. At time t ¼ 0, each particle i is
independently assigned a waiting time Wi from the dis-
tribution pðWiÞ. When a particle’s waiting time expires, it
attempts to hop to the site to its right, succeeding only if the
receiving site is empty. Whether or not the attempt is a
success, the particle is assigned a new waiting time from
pðWiÞ. Then, the next hop attempt takes place at time
tþWi, where t is the time of the most recent hop attempt.
Figure 1 shows a schedule of hop attempts.
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This formulation amounts to restarting the process that
generates the waiting-time distribution pðWÞ when a hop
attempt fails. This scheme was used in Ref. [22] to model
motor proteins. In that work, the waiting-time distribution
had an exponential tail: under such conditions, we find that
the non-Poissonian ASEP on a ring has broadly the same
behavior as the Poissonian version.
It is also possible for a waiting-time distribution to have a

nonexponential tail. For example, in Bouchaud’s trap
model [23,24], particles fall into traps with exponentially
distributed depths ϵ. Particles escape from their traps as a
Poisson process with a rate given by the Arrhenius law
e−ϵ=T , where T is the temperature. The waiting-time
distribution then has a power-law tail pðWÞ ∼W−ðTþ1Þ.
Such models have been used to describe ageing phenomena
in glasses [24] and kink propagation along a dislocation
line [25]. The non-Poissonian ASEP with a power-law
waiting-time distribution can therefore be viewed as a trap
model where particles continually hop between traps in
some energy landscape but move in a physical space only
when the site in front is unoccupied at the instant a new trap
is entered.
An initial study of the ASEP with a power-law waiting-

time distribution, pðWÞ ¼ ðγ − 1ÞW−γ for γ > 1,W > 1, is
facilitated by a standard Monte Carlo waiting-time algo-
rithm [26]. The fundamental diagram—a plot of the steady-
state flux JW̄ against particle density ρ ¼ N=L—is shown
in the upper part of Fig. 2 for various γ, where J is the
particle current and W̄ is the mean of pðWÞ. For Poissonian
dynamics, it is known that JW̄ ¼ ρð1 − ρÞ [6,14]. For
γ > 3, we see reasonable agreement with this result. For
γ < 3, significant deviations are apparent. First, the flux is
no longer symmetric about ρ ¼ 1=2: this is due to breaking
of the particle-hole symmetry that is present in the
Poissonian case. Second, the current is somewhat smaller,
indeed apparently vanishing in the thermodynamic limit
(L → ∞; N → ∞ with ρ ¼ N=L fixed) as the lower part of
Fig. 2 shows.
When γ < 3, the variance of the waiting-time distribu-

tion is infinite. Intuition then suggests that anomalously
large waiting times are generated sufficiently often that all

the particles can become blocked by a single, immobile
particle at the head of the block. If these solid blocks are
present for a fraction of time f that increases with system
size L, the current would vanish as L → ∞. The function
fðLÞ, as determined by direct Monte Carlo simulations, is
shown in Fig. 3 as open symbols. The data show some
increase of f with L but, over the range of system sizes and
γ that are accessible with this method, it is not clear whether
f will approach unity in the thermodynamic limit or
saturate at some smaller value.
We now argue that across the entire range 2 < γ < 3 the

fraction of time that a condensate is present approaches
unity in the thermodynamic limit and identify the physical
mechanism behind this effect. The first step is to recognize
that once a single solid block is formed, it need not fully

FIG. 1 (color online). Hop times in the non-Poissonian ASEP.
Each particle is represented as a clock showing the current time
(arrow), the last time each particle moved (break in the circle),
and the times of the next hop attempts (short lines). These are
given by the cumulative waiting times W1; W1þW2;…, where
each term is a random variable drawn from pðWÞ. In this figure,
the first hop attempts of the outer particles succeed and the first
attempt of the middle particle fails but its second attempt
succeeds.

(a)

(b)

FIG. 2 (color online). Flux JW̄ as a function of density ρ at
fixed system size L ¼ 500 (upper figure) and as a function of
system size with ρ ¼ 0.1, γ ¼ 2.5 (lower figure) as determined
from direct simulations of the hopping dynamics.

FIG. 3 (color online). Fraction f of time during which a single
solid block is present obtained from simulations using the direct
algorithm (open symbols for γ ≥ 2.3) and the accelerated
algorithm (solid symbols for γ ≥ 2.3 and all data for γ < 2.3).
In all cases, the density ρ ¼ 0.1.
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dissolve before the next one is formed: some particles may
break off from the front of the block, traverse the system,
and rejoin the back of the block while the rest of the block
remains stationary. Figure 4 shows that the fraction σ of
condensates that are formed out of a remnant of the last
increases steadily with system size. The lifetime of a
current-carrying state (the fluid) can be estimated as that
required for a particle to traverse the system, i.e., a time of
order L. The lifetime of the condensate, meanwhile,
requires a more detailed analysis.
The crucial physical component of this analysis is

elucidated by revisiting the trap picture. Here it is known
[24] that, in the stationary state, the waiting timeW that was
most recently assigned to any randomly chosen particle has
a distribution with a ∼W1−γ tail, as opposed to the original
pðWÞ ∼W−γ distribution. Consider now a pair of particles
on neighboring sites where the first particle is about to
move off and the second arrived a time T ago. As we will
show below, the residual waiting time Δ at which the
second particle moves off relative to the first has a hybrid of
these two distributions, crossing over from the slower Δ1−γ
decay to the Δ−γ decay at Δ ∼ T. This is because, from the
perspective of the first particle, the second is not a
randomly chosen particle. Rather, their motions are corre-
lated because the second particle must have attempted to
hop (whether successful or not) since the first particle last
hopped. As we will see, this correlation leads to Δ growing
with T in such a way that the condensate persists for a time
that grows faster than the OðLÞ fluid lifetime in the
thermodynamic limit.
We thus define pðΔjTÞ as the residual waiting time

distribution for a particle that is unable to move for a time
T after arriving at a site, due to the presence of a particle in
front. It can bewritten aspðΔjTÞ ¼ R

T
0 dtμðtÞpðT þ Δ − tÞ,

where μðtÞ is the density of hop attempts at time t conditioned
on an attempt taking place at time t ¼ 0. It seems reasonable

that μðtÞ will approach the constant 1=W̄ as t → ∞, where
we recall that W̄ is the mean time between attempts. One
can show that this intuition holds by appealing to the
Laplace transform ~μðsÞ ¼ ½1 − ~pðsÞ�−1, where ~xðsÞ denotes
the Laplace transform of a function xðtÞ [27]. The dominant
singularity in ~μðsÞ is a pole at the origin with amplitude
1=W̄, yielding the expected t → ∞ behavior.
Approximating μðtÞ by this constant value for all t in
the integral for pðΔjTÞ, we find that

pðΔjTÞ ∼ γ − 2

1 − T2−γ ½Δ1−γ − ðT þ ΔÞ1−γ�; (1)

where the prefactor ensures correct normalization. We
expect Eq. (1) to hold for T sufficiently large that transients
in μðtÞ can be neglected: an analysis of the Laplace
transform of pðΔjTÞ shows that this is indeed the case [28].
The result (1) allows us to accelerate the Monte Carlo

simulations, thereby gaining access to larger systems and
smaller values of γ than were possible with the direct
approach. This is achieved by noting that when a particle
arrives at a site where it cannot move, the time T for which
it must wait before the particle in front moves off is known.
When T is large enough for the asymptotic result (1) for
pðWjTÞ to hold, it can be used to assign the arriving
particle’s residual waiting time in a single operation instead
of repeatedly resampling the original waiting-time distri-
bution until the sum of all such times exceeds T. For
smaller T, we fall back on the latter direct-summation
approach to retain accuracy. Empirically, we have found
that across the whole range of γ, the distribution (1) can be
used for T > 2000. In Fig. 3, data from this accelerated
algorithm (filled symbols) agree well with those from the
brute-force algorithm (open symbols). We further see for
γ ≤ 2.3 that the fraction of time spent in a complete
condensate fðLÞ reaches unity as L increases. For larger
γ, fðLÞ steadily increases, suggesting that the same
asymptote will be seen here too.
The result (1) also allows analytical progress. First, we

can estimate the probability σ that a condensate does not
completely dissolve before the next is formed. For dis-
solution to occur, all particles must receive a residual
waiting time Δi smaller than the time Ci−1 taken by the
particle in front to rejoin the back of the condensate.
Assuming that the times Ci are of order L (since this is the
number of sites that must be traversed), and that all
blocking times Ti are all of order L (since this is what
is required for the condensate to form in the first place), we
have 1 − σ ¼ Q

i½1 −
R
∞
Ci−1 dΔiPðΔijTiÞ� ∼ e−aL3−γ

for
some a > 0. When γ < 3, the fraction σ → 1 as L → ∞,
showing that typically each condensate comprises a rem-
nant of the previous condensate. This is consistent with the
empirical data for σ shown in Fig. 4.
We now consider a particle that has made the round-trip

from the front to the back of the condensate. Let us index
the particles with i ¼ 1; 2;… from the front to the back of

FIG. 4 (color online). Fraction σ of condensates that do not
fully dissolve as a function of system size. All data obtained using
the direct simulation algorithm.
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the condensate. Relative to the time at which particle N left
the previous condensate, the time that particle N − 1 will
move is given by the sum of the residual waiting times Δj
for particles j ¼ 1; 2;…; N − 1. Then, the blocking time
for particle N is

TN ¼
XN−1

j¼1

Δj − CN; (2)

where CN is the time particle N took to make the round-trip
from the front to the back of the condensate.
After sufficiently many round-trips, we assume that the

distributions of the random variables T, Δ, and C in Eq. (2)
become stationary. Using Eq. (1), one can show that
the mean of Δ, for some known value of T, is
T3−γ=½ð3 − γÞðγ − 1Þ� − ðγ − 2Þ=½3ð2 − γÞ�. By averaging
Eq. (2) and making the mean field–type approximation
gðTÞ ¼ gðT̄Þ, for any function gðuÞ, we find for large L the
stationary mean blocking time to be

T̄ ∼
�

ρL
ð3 − γÞðγ − 1Þ

�
1=ðγ−2Þ

: (3)

The mean round-trip time C̄ does not enter into this
asymptotic (large-L) result if it grows linearly in L, as
we have assumed throughout this work. Now, let Δ̄þ be the
mean residual waiting time for a blocked particle in a
stationary condensate conditioned on it being large enough
to precipitate the next condensate (i.e., Δ > C̄). The life-
time of each condensate can then be estimated as Δ̄þ − C̄,
whose leading term scales as Lχ with χ ¼
ð3 − γÞ=ðγ − 2Þ þ γ − 2. With the fluid lifetime being of
order C̄ ∼ L, we find now that there is a separation of time
scales for the condensate and the fluid for γ < 3, implying
that a single condensate comprising all particles is present
at almost all times in the thermodynamic limit.
We test this picture with simulations. In the main part of

Fig. 5 we show how the condensate and fluid lifetimes scale
with system size. We find that the predicted Lχ growth of
the condensate lifetime is consistent with simulation.
Although the fluid lifetime appears to scale slightly faster
than linearly with L, as we have assumed in the analysis,
the condensate exponent always exceeds the fluid expo-
nent, showing that the predicted separation of time scales is
indeed present. Another test of the theory is to examine the
stationary blocking time predicted by Eq. (3). Here we find
that the exponent is well predicted, but the prefactor can be
several orders of magnitude larger than that observed. This
discrepancy is due to assuming that the random variable Tj
can be replaced with its mean T̄. To correct for this, we
constructed the stationary distribution of T self-consistently
by manipulating a pool of n ¼ 104 instances of the random
variable T. In each iteration of this algorithm, N − 1 values
are sampled with replacement from the pool, and then used

in Eq. (1) to generate residual waiting times Δj. Performing
the sum (2) yields a new instance of the random variable T,
which replaces one of the existing values in the pool. We
found that even when neglecting the round-trip time Ci
completely (i.e., setting it to zero), the mean blocking time
Tsc obtained after convergence is consistent with simu-
lation (at least for large L; see Fig. 5, inset).
Collectively, our simulation and analytical results paint

the following picture of condensation in the non-Poissonian
ASEP. At first, a current flows until one particle is assigned
a waiting time large enough for the rest to catch up and
form a single, solid condensate. Each particle in the
condensate is blocked for a successively longer time T,
which in turn implies, through Eq. (1), that the time Δ,
between a particle becoming unblocked and beginning to
move, also tends to grow. This growth is sufficiently fast
that one of the particles that breaks off will make the round-
trip and restore the condensate before the next particle can
move off. This process is repeated until a stationary state is
reached in which the lifetime of a single condensate grows
as a faster power of system size than that of the fluid. In this
sense, the condensate is complete in both space (it involves
all the particles) and time (it is present almost all the time).
We have therefore found that in the specific case of the

ASEP, non-Poissonian particle hopping dynamics induce
an interaction that is sufficiently strong to induce a
condensation phenomenon that is completely absent in
the Poissonian case. The condensation mechanism is
distinct from that of related systems, such as the zero-
range process. Moreover, a non-Markovian generalization
of the latter [13] shows a raising of the critical density for
condensation, as opposed to the greater propensity towards
condensation found here. Further study [28] has shown the

FIG. 5 (color online). Main figure: Empirical scaling exponents
of the condensate and fluid lifetimes with system size for various
γ at ρ ¼ 0.1, along with the theoretical predictions. Inset:
Approach of the blocking time Ti to its stationary value,
normalized to the prediction Tsc for the latter obtained using
the self-consistent sampling algorithm.

PRL 112, 050603 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

7 FEBRUARY 2014

050603-4



condensate to be robust to spatial asymmetry in the
dynamics. On the other hand, it goes away if the process
generating the power-law waiting-time distribution is
started only when a particle is free to move. This demon-
strates that the relationship between the way in which non-
Poissonian stochastic processes interact and the emergent
properties of a system is not straightforward, and that
further investigation of interacting non-Poissonian proc-
esses is needed to build a systematic picture of this
relationship.
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