27 research outputs found

    Encapsulated high temperature PCM as active filler material in a thermocline-based thermal storage system

    Get PDF
    A great concern in Concentrated Solar Power (CSP) is to boost energy harvesting systems, by finding materials with enhanced thermal performance. Phase Change Materials (PCM) have emerged as a promising option, due to their high thermal storage density compared to sensible storage materials currently used in CSP. A thermal storage system for solar power plants is proposed, a thermocline tank with PCM capsules together with filler materials, based on multi-layered solid-PCM (MLSPCM) thermocline-like storage tank concept [1,2]. A detailed selection of the most suitable high temperature PCM, their containment materials and encapsulation methods are shown

    Heat transfer characteristics of thermal energy storage system using PCM capsules: A review

    No full text
    Thermal energy storage has recently attracted increasing interest related to thermal applications such as space and water heating, waste heat utilization, cooling and air-conditioning. Energy storage is essential whenever there is a mismatch between the supply and consumption of energy. Use of phase change material (PCM) capsules assembled as a packed bed is one of the important methods that has been proposed to achieve the objective of high storage density with higher efficiency. A proper designing of the thermal energy storage systems using PCMs requires quantitative information about heat transfer and phase change processes in PCM. This paper reviews the development of available latent heat thermal energy storage technologies. The different aspects of storage such as material, encapsulation, heat transfer, applications and new PCM technology innovation have been carried out.PCM capsules Packed bed Thermal energy storage

    Design and Analysis of Biomass Drying unit with Waste Heat Recovery and Storage

    No full text
    AbstractMoisture content in the biomass causes reduction in efficiency of the power generation in biomass power plant. Removal of this moisture is been biggest challenge during monsoon and winter. This paper deals with method of reduction of moisture in minimum time by using waste heat recovery. Warm bed with PCM material is continuously heated by exhaust flue gas, this warm bed used as moisture removal system. Analysis of system with various PCM materials were carried by creating geometry using Gambit and simulated results obtained using Fluent

    Transient modelling of heat loading of phase change material for energy storage

    No full text
    As the development of solar energy is getting advance from time to time, the concentration solar technology also get the similar attention from the researchers all around the globe. This technology concentrate a large amount of energy into main spot. To collect all the available energy harvest from the solar panel, a thermal energy storage is required to convert the heat energy to one of the purpose such as electrical energy. With the idea of energy storage application that can be narrow down to commercial application such as cooking stove. Using latent heat type energy storage seem to be appropriate with the usage of phase change material (PCM) that can release and absorb heat energy at nearly constant temperature by changing its state. Sodium nitrate (NaNO3) and potassium nitrate (KNO3) was selected to use as PCM in this project. This paper focus on the heat loading process and the melting process of the PCM in the energy storage using a computer simulation. The model of the energy storage was created as solid three dimensional modelling using computer aided software and the geometry size of it depend on how much it can apply to boil 1 kg of water in cooking application. The materials used in the tank, heat exchanger and the heat transfer fluid are stainless steel, copper and XCELTHERM MK1, respectively. The analysis was performed using a commercial simulation software in a transient state. The simulation run on different value of velocity but kept controlled under laminar state only, then the relationship of velocity and heat distribution was studied and the melting process of the PCM also has been analyzed. On the effect of heat transfer fluid velocity, the higher the velocity resulted in higher the rate of heat transfer. The comparison between the melting percentages of the PCMs under test conditions show that NaNO3 melts quite faster than KNO3
    corecore