106 research outputs found

    KA1-targeted regulatory domain mutations activate Chk1 in the absence of DNA damage

    Get PDF
    The Chk1 protein kinase is activated in response to DNA damage through ATR-mediated phosphorylation at multiple serine-glutamine (SQ) residues within the C-terminal regulatory domain, however the molecular mechanism is not understood. Modelling indicates a high probability that this region of Chk1 contains a kinase-associated 1 (KA1) domain, a small, compact protein fold found in multiple protein kinases including SOS2, AMPK and MARK3. We introduced mutations into Chk1 designed to disrupt specific structural elements of the predicted KA1 domain. Remarkably, six of seven Chk1 KA1 mutants exhibit constitutive biological activity (Chk1-CA) in the absence of DNA damage, profoundly arresting cells in G2 phase of the cell cycle. Cell cycle arrest induced by selected Chk1-CA mutants depends on kinase catalytic activity, which is increased several-fold compared to wild-type, however phosphorylation of the key ATR regulatory site serine 345 (S345) is not required. Thus, mutations targeting the putative Chk1 KA1 domain confer constitutive biological activity by circumventing the need for ATR-mediated positive regulatory phosphorylation

    Hybrid Stars in a Strong Magnetic Field

    Full text link
    We study the effects of high magnetic fields on the particle population and equation of state of hybrid stars using an extended hadronic and quark SU(3) non-linear realization of the sigma model. In this model the degrees of freedom change naturally from hadrons to quarks as the density and/or temperature increases. The effects of high magnetic fields and anomalous magnetic moment are visible in the macroscopic properties of the star, such as mass, adiabatic index, moment of inertia, and cooling curves. Moreover, at the same time that the magnetic fields become high enough to modify those properties, they make the star anisotropic.Comment: Revised version with updated reference

    Reversion of epigenetically mediated BIM silencing overcomes chemoresistance in Burkitt lymphoma

    Get PDF
    In Burkitt lymphoma/leukemia (BL), achievement of complete remission with first-line chemotherapy remains a challenging issue, as most patients who respond remain disease-free, whereas those refractory have few options of being rescued with salvage therapies. The mechanisms underlying BL chemoresistance and how it can be circumvented remain undetermined. We previously reported the frequent inactivation of the proapoptotic BIM gene in B-cell lymphomas. Here we show that BIM epigenetic silencing by concurrent promoter hypermethylation and deacetylation occurs frequently in primary BL samples and BL-derived cell lines. Remarkably, patients with BL with hypermethylated BIM presented lower complete remission rate (24% vs 79%; P = .002) and shorter overall survival (P = .007) than those with BIM-expressing lymphomas, indicating that BIM transcriptional repression may mediate tumor chemoresistance. Accordingly, by combining in vitro and in vivo studies of human BL-xenografts grown in immunodeficient RAG2(-/-)γc(-/-) mice and of murine B220(+)IgM(+) B-cell lymphomas generated in Eμ-MYC and Eμ-MYC-BIM(+/-) transgenes, we demonstrate that lymphoma chemoresistance is dictated by BIM gene dosage and is reversible on BIM reactivation by genetic manipulation or after treatment with histone-deacetylase inhibitors. We suggest that the combination of histone-deacetylase inhibitors and high-dose chemotherapy may overcome chemoresistance, achieve durable remission, and improve survival of patients with BL

    Pituitary Neoplasm Nomenclature Workshop: Does Adenoma Stand the Test of Time?

    Get PDF
    The WHO Classification of Endocrine Tumours designates pituitary neoplasms as adenomas. A proposed nomenclature change to pituitary neuroendocrine tumors (PitNETs) has been met with concern by some stakeholder groups. The Pituitary Society coordinated the Pituitary Neoplasm Nomenclature (PANOMEN) workshop to address the topic. Experts in pituitary developmental biology, pathology, neurosurgery, endocrinology, and oncology, including representatives nominated by the Endocrine Society, European Society of Endocrinology, European Neuroendocrine Association, Growth Hormone Research Society, and International Society of Pituitary Surgeons. Clinical epidemiology, disease phenotype, management, and prognosis of pituitary adenomas differ from that of most NETs. The vast majority of pituitary adenomas are benign and do not adversely impact life expectancy. A nomenclature change to PitNET does not address the main challenge of prognostic prediction, assigns an uncertain malignancy designation to benign pituitary adenomas, and may adversely affect patients. Due to pandemic restrictions, the workshop was conducted virtually, with audiovisual lectures and written précis on each topic provided to all participants. Feedback was collated and summarized by Content Chairs and discussed during a virtual writing meeting moderated by Session Chairs, which yielded an evidence-based draft document sent to all participants for review and approval. There is not yet a case for adopting the PitNET nomenclature. The PANOMEN Workshop recommends that the term adenoma be retained and that the topic be revisited as new evidence on pituitary neoplasm biology emerges
    corecore