156 research outputs found

    Paracoccidioides species complex : ecology, phylogeny, sexual reproduction, and virulence

    Get PDF
    Paracoccidioidomycosis (PCM) is a deep systemic mycosis caused by human fungal pathogens of the Paracoccidioides genus. The disease is geographically restricted to subtropical areas of Latin America (from south of Mexico to north of Argentina) with a high prevalence in Brazil, Colombia, Venezuela, and Argentina [1]. The annual incidence rate in Brazil is 10–30 infections per million inhabitants, and the mean mortality rate is 1.4 per million inhabitants per year, making this disease the highest cause of mortality among systemic mycoses [2]. PCM is endemic in rural populations and mainly affects individuals engaged in agricultural activities, who inhale aerosols containing fungal material during manipulation of the soil. Molecular evolutionary studies place the genus Paracoccidioides in the thermodimorphic fungal pathogen clade related to the family Ajellomycetaceae (Ascomycetes), which includes the Blastomyces, Histoplasma, and Emmonsia genera, and with which it shares a common ancestor, Lacazia loboi. PCM can be caused by two species Paracoccidioides brasiliensis and P. lutzii [3]. P. brasiliensis has been considered a single species since its discovery, although several studies including molecular and morphological data support the split of P. brasiliensis into two species [3,4]. P. lutzii is composed of a single monophyletic and recombining population so far found in central, southwest, and north Brazil and Ecuador [3–5]. On the other hand, P. brasiliensis contains a complex of at least four different cryptic species (S1, PS2, PS3 and PS4; Figure 1A [6]). P. brasiliensis S1 represents a monophyletic and recombining population widely distributed in South America and has been associated with the majority of cases of PCM detected up until the present time. Strains belonging to P. brasiliensis S1 have previously been recovered from armadillos, soil, and penguin feces [6]. P. brasiliensis PS2 is a paraphyletic and recombining population identified so far only in Brazil and Venezuela [6]. P. brasiliensis PS3 is comprised of a monophyletic and clonal population that has been recovered in humans and armadillos in endemic regions of Colombia [6]. P. brasiliensis PS4 was recently identified and is composed of a monophyletic population of clinical isolates from Venezuela [5,7]. Besides the typical bicorn cocked hat– and barrel-shaped conidia produced by both species, P. lutzii frequently produces elongated rod-shaped conidia, a characteristic feature that may be used for species identification [3]. Because of the difficulties of conidia production in the laboratory and slight morphological differences among species, molecular identification of Paracoccidioides species has become the most common tool of choice. Several molecular markers have already been applied in population studies of the Pararacoccidioides genus, and for multilocus sequencing typing, gp43, arf, b-tub, and hsp70 loci are the best choices for species delineation [4,6]

    Comparative genomics allowed the identification of drug targets against human fungal pathogens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of invasive fungal infections (IFIs) has increased steadily worldwide in the last few decades. Particularly, there has been a global rise in the number of infections among immunosuppressed people. These patients present severe clinical forms of the infections, which are commonly fatal, and they are more susceptible to opportunistic fungal infections than non-immunocompromised people. IFIs have historically been associated with high morbidity and mortality, partly because of the limitations of available antifungal therapies, including side effects, toxicities, drug interactions and antifungal resistance. Thus, the search for alternative therapies and/or the development of more specific drugs is a challenge that needs to be met. Genomics has created new ways of examining genes, which open new strategies for drug development and control of human diseases.</p> <p>Results</p> <p><it>In silico </it>analyses and manual mining selected initially 57 potential drug targets, based on 55 genes experimentally confirmed as essential for <it>Candida albicans </it>or <it>Aspergillus fumigatus </it>and other 2 genes (<it>kre2 </it>and <it>erg6</it>) relevant for fungal survival within the host. Orthologs for those 57 potential targets were also identified in eight human fungal pathogens (<it>C. albicans</it>, <it>A. fumigatus</it>, <it>Blastomyces dermatitidis</it>, <it>Paracoccidioides brasiliensis</it>, <it>Paracoccidioides lutzii, Coccidioides immitis</it>, <it>Cryptococcus neoformans </it>and <it>Histoplasma capsulatum</it>). Of those, 10 genes were present in all pathogenic fungi analyzed and absent in the human genome. We focused on four candidates: <it>trr1 </it>that encodes for thioredoxin reductase, <it>rim8 </it>that encodes for a protein involved in the proteolytic activation of a transcriptional factor in response to alkaline pH, <it>kre2 </it>that encodes for α-1,2-mannosyltransferase and <it>erg6 </it>that encodes for Δ(24)-sterol C-methyltransferase.</p> <p>Conclusions</p> <p>Our data show that the comparative genomics analysis of eight fungal pathogens enabled the identification of four new potential drug targets. The preferred profile for fungal targets includes proteins conserved among fungi, but absent in the human genome. These characteristics potentially minimize toxic side effects exerted by pharmacological inhibition of the cellular targets. From this first step of post-genomic analysis, we obtained information relevant to future new drug development.</p

    Semi-nested PCR para a detecção molecular de Paracoccidioides brasiliensis em amostras de tecido

    Get PDF
    INTRODUCTION: Paracoccidioidomycosis is a systemic infection caused by Paracoccidioides brasiliensis. METHODS: In this study, a semi-nested PCR for paracoccidioidomycosis diagnosis was developed. The primers ITS1 and ITS4 were used in the first reaction, while the primers MJ03 and ITS1 primer were used in the second reaction. The semi-nested PCR was used to investigate biopsies of five patients with oral lesions that resembled paracoccidioidomycosis. RESULTS: The semi-nested PCR was positive for four samples and negative for a sample from a patient later diagnosed with leishmaniasis. CONCLUSIONS: The new semi-nested PCR describe is useful for aracoccidioidomycosis diagnosis. ________________________________________________________________________________________________________________ RESUMOINTRODUÇÃO: A paracoccidioidomicose é uma infecção sistêmica causada pelo Paracoccidioides brasiliensis. MÉTODOS: Neste estudo, uma semi-nested PCR foi desenvolvida para o diagnóstico da paracoccidioidomicose. Os oligonucleotídeos iniciadores ITS1 e ITS4 foram usados na primeira reação, enquanto os oligonucleotídeos iniciadores MJ03 e ITS1 foram usados na segunda reação. A semi-nested PCR foi usada para investigar biopsias de cinco pacientes com lesões orais que se assemelhavam a paracoccidioidomicose. RESULTADOS: A semi-nested PCR foi positiva para quatro amostras e negativa para a amostra de um paciente, posteriormente diagnosticado com leishmaniose. CONCLUSÕES: A semi-nested PCR descrita aqui é útil para o diagnóstico da paracoccidioidomicose

    Extracellular Paracoccidioides brasiliensis phospholipase B involvement in alveolar macrophage interaction

    Get PDF
    Background: Phospholipase B (PLB) has been reported to be one of the virulence factors for human pathogenic fungi and has also been described as necessary for the early events in infection. Based on these data, we investigated the role of PLB in virulence and modulation of the alveolar pulmonary immune response during infection using an in-vitro model of host-pathogen interaction, i.e. Paracoccidioides brasiliensis yeast cells infecting alveolar macrophage (MH-S) cells. Results: The effect of PLB was analyzed using the specific inhibitor alexidine dihydrochloride (0.25 μM), and pulmonary surfactant (100 μg mL-1), during 6 hours of co-cultivation of P. brasiliensis and MH-S cells. Alexidine dihydrochloride inhibited PLB activity by 66% and significantly decreased the adhesion and internalization of yeast cells by MH-S cells. Genes involved in phagocytosis (trl2, cd14) and the inflammatory response (nfkb, tnf-α, il-1β) were down-regulated in the presence of this PLB inhibitor. In contrast, PLB activity and internalization of yeast cells significantly increased in the presence of pulmonary surfactant; under this condition, genes such as clec2 and the pro-inflammatory inhibitor (nkrf) were up-regulated. Also, the pulmonary surfactant did not alter cytokine production, while alexidine dihydrochloride decreased the levels of interleukin-10 (IL-10) and increased the levels of IL-12 and tumor necrosis factor-α (TNF-α). In addition, gene expression analysis of plb1, sod3 and icl1 suggests that P. brasiliensis gene re-programming is effective in facilitating adaptation to this inhospitable environment, which mimics the lung-environment interaction. Conclusion: P. brasiliensis PLB activity is involved in the process of adhesion and internalization of yeast cells at the MH-S cell surface and may enhance virulence and subsequent down-regulation of macrophage activation

    Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells

    Get PDF
    The pathogenic fungus Paracoccidioides brasiliensis causes paracoccidioidomycosis, a pulmonary mycosis acquired by inhalation of fungal airborne propagules, which may disseminate to several organs and tissues, leading to a severe form of the disease. Adhesion to and invasion of host cells are essential steps involved in the infection and dissemination of pathogens. Furthermore, pathogens use their surface molecules to bind to host extracellular matrix components to establish infection. Here, we report the characterization of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of P. brasiliensis as an adhesin, which can be related to fungus adhesion and invasion. the P. brasiliensis GAPDH was overexpressed in Escherichia coli, and polyclonal antibody against this protein was obtained. By immunoelectron microscopy and Western blot analysis, GAPDH was detected in the cytoplasm and the cell wall of the yeast phase of P. brasiliensis. the recombinant GAPDH was found to bind to fibronectin, laminin, and type I collagen in ligand far-Western blot assays. of special note, the treatment of P. brasiliensis yeast cells with anti-GAPDH polyclonal antibody and the incubation of pneumocytes with the recombinant protein promoted inhibition of adherence and internalization of P. brasiliensis to those in vitro-cultured cells. These observations indicate that the cell wall-associated form of the GAPDH in P. brasiliensis could be involved in mediating binding of fungal cells to fibronectin, type I collagen, and laminin, thus contributing to the adhesion of the microorganism to host tissues and to the dissemination of infection.Univ Fed Goias, Inst Ciencias Biol, Mol Biol Lab, BR-74001970 Goiania, Go, BrazilUniv Brasilia, BR-70910900 Brasilia, DF, BrazilUniv Estadual Julio Mesquita Filho, Araraquara, SP, BrazilUniversidade Federal de São Paulo, São Paulo, BrazilUniversidade Federal de São Paulo, São Paulo, BrazilWeb of Scienc

    Disseminated Clonal Complex 5 (CC5) methicillin-resistant Staphylococcus aureus SCCmec type II in a tertiary hospital of Southern Brazil

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of human infections worldwide, with major dominant lineage circulating in particular geographical regions. The Brazilian Epidemic Clone (BEC, SCCmec III, ST 239) has been predominant in most Brazilian hospitals. Here, we report the prevalence of MRSA SCCmec type II exhibiting different STs, most of them belonging to CC5 in a tertiary hospital in Southern Brazil

    MCIBiotec: solução tecnológica para o planejamento pedagógico de aulas de biotecnologia

    Get PDF
    A Educação precisa ser pautada pela geração de estudantes que se fazem presentes na sala de aula, assim como pelo uso de inovações tecnológicas pelos docentes, o que precisa estar presente no planejamento pedagógico. A Base Nacional Comum Curricular (BNCC) (BRASIL, 2018), que apresenta o novo Ensino Médio, enfatiza a importância da Biotecnologia para o componente curricular de Ciências da Natureza e suas Tecnologias. Neste cenário este artigo tem como objetivo apresentar o aplicativo (App) desenvolvido para assessoramento pedagógico de docentes deste componente curricular, especificamente na temática Biotecnologia, com ênfase ao uso das cores, na concepção de Kafarski (2012). Denominado MCIBiotec, o App contribuirá para o planejamento pedagógico da escolha do tema até a avaliação, passando pelas competências a serem desenvolvidas e pela metodologia a ser desenvolvida; ao final está apresentado um template que pode ser compartilhado e reeditado pelo responsável. O desenvolvimento do App ocorreu baseado em pesquisas com docentes das áreas de Biologia, Química e Física, do Ensino Médio, bem como com Professores Doutores de Programas de Pós-graduação em Biotecnologia que referendaram sua aplicabilidade

    Determinación mediante la prueba del laberinto elevado en cruz del efecto ansiogénico en ratas de extractos de Tabernaemontana solanifolia A. DC. (Apocynaceae)

    Get PDF
    ABSTRACTIntroduction: Tabernaemontana solanifolia A. DC. (Apocynaceae) grows in the Cerrado (savanna), Caatinga (shrublands), and Atlantic Forest of Brazil. Objective: to investigate the potential anxiolytic activity of the crude extracts and ß-amyrin acetate obtained from the leaves of Tabernaemontana solanifolia in the elevated plus-maze (EPM) test for anxiety in rats. Methods: the crude extracts (aqueous, ethanol, and hexane), as well as ß-amyrin acetate, obtained from Tabernaemontana solanifolia leaves were evaluated for possible anxiolytic effects in rats tested in the elevated plus-maze. Acute toxicity in rats was determined by OECD 423 guidelines. The leaves of T. solanifolia specimens collected in Brasília, Brazil, were air dried at 40 °C and macerated with hexane or ethanol. After filtration, the solvents were removed under reduced pressure, yielding the crude hexane and ethanolic extracts (5.96 and 18.62 % yield, respectively). The crude aqueous extract was obtained by infusion, followed by lyophilization (13.5 % yield). Thirty minutes before the elevated plus-maze experiments, the animals were treated with the crude ethanol extract (1 000 mg/kg of body weight [bw], p.o.), the crude hexane extract (1 000 mg/kg bw, p.o.), the crude extract (1 000 mg/kg bw, p.o.), or ß-amyrin acetate (21 mg/kg bw, p.o.). Results: the extracts cauded no mortality up to 2 000 mg/kg, so half of DL50 doses were selected for the present study. The crude extracts (hexane, ethanolic and aqueous) (1.0 g/kg) as well as the substance ß-amyrin acetate (21 mg/kg) were administered once, increasing the number of entries into and the time spent in the closed arms of the elevated plus-maze. Conclusion: the oral administration of the extracts and ß-amyrin acetate obtained from Tabernaemontana solanifolia had an anxiogenic effect in rats. Further studies are needed in order to identify and characterize the anxiogenic properties of Tabernaemontana solanifolia and to understand the anxiogenic mechanisms of the extracts. ______________________________________________________________________________ RESUMENIntroducción: Tabernaemontana solanifolia A. DC. (Apocynaceae) crece en el Cerrado (sabana), Caatinga (matorrales) y la Mata Atlántica de Brasil. Objetivo: investigar la posible actividad ansiolítica de los extractos crudos y el acetato de ß-amirina obtenidos de las hojas de Tabernaemontana solanifolia en la prueba del laberinto elevado en cruz (EPM) para la ansiedad en ratas. Métodos: los extractos crudos (etanol acuoso y hexano), así como el acetato de ß-amirina, se evaluaron para posibles efectos ansiolíticos en ratas mediante la prueba del laberinto elevado en cruz. La toxicidad aguda en ratas se determinó por las directrices OCDE 423. Las hojas de Tabernaemontana solanifolia se secaron al aire a 40 °C y fueron maceradas con hexano y etanol. Después de la filtración, los disolventes se eliminaron bajo presión reducida, produciendo los extractos crudos hexano y etanólico (5,96 y 18,62 % de rendimiento, respectivamente). El extracto acuoso bruto se obtuvo por infusión, seguida por liofilización (13,5 % de rendimiento). A 30 min antes de los experimentos de laberinto elevado en cruz, los animales se trataron con el extracto de etanol crudo (1 000 mg/kg de peso corporal [bw], p.o.), el extracto de hexano crudo (1 000 mg/kg de peso corporal, por vía oral), el extracto acuoso (1 000 mg/kg de peso corporal, por vía oral) o ß-amirina acetato (21 mg/kg de peso corporal, por vía oral). Resultados: los extractos no produjeron mortalidad hasta 2 000 mg/kg, por lo que para el presente estudio se seleccionó la mitad de la dosis DL50. Los extractos crudos (hexano, etanol y acuoso) (1 000 mg/kg), así como la sustancia acetato de ß-amirina (21 mg/kg) se administraron una vez, aumentando el número de entradas y el tiempo pasado en los brazos cerrados de la prueba del laberinto elevado en cruz. Conclusión: la administración oral de los extractos y el acetato de ß-amirina obtenidos de Tabernaemontana solanifolia tuvo un efecto ansiogénico en ratas. Se necesitan estudios adicionales para identificar y caracterizar las propiedades ansiogénicas de Tabernaemontana solanifolia y para entender los mecanismos ansiogénicos de los extractos

    The stress responsive and morphologically regulated hsp90 gene from Paracoccidioides brasiliensis is essential to cell viability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Paracoccidioides brasiliensis </it>is a dimorphic fungus that causes the most prevalent systemic mycosis in Latin America. The response to heat shock is involved in pathogenesis, as this pathogen switches from mycelium to yeast forms in a temperature dependent fashion that is essential to establish infection. HSP90 is a molecular chaperone that helps in the folding and stabilization of selected polypeptides. HSP90 family members have been shown to present important roles in fungi, especially in the pathogenic species, as an immunodominant antigen and also as a potential antifungal therapeutic target.</p> <p>Results</p> <p>In this work, we decided to further study the <it>Pbhsp90 </it>gene, its expression and role in cell viability because it plays important roles in fungal physiology and pathogenesis. Thus, we have sequenced a <it>Pbhsp90 </it>cDNA and shown that this gene is present on the genome as a single copy. We have also confirmed its preferential expression in the yeast phase and its overexpression during dimorphic transition and oxidative stress. Treatment of the yeast with the specific HSP90 inhibitors geldanamycin and radicicol inhibited growth at 2 and 10 μM, respectively.</p> <p>Conclusion</p> <p>The data confirm that the <it>Pbhsp90 </it>gene encodes a morphologically regulated and stress-responsive protein whose function is essential to cell viability of this pathogen. This work also enforces the potential of HSP90 as a target for antifungal therapies, since the use of HSP90 inhibitors is lethal to the <it>P. brasiliensis </it>yeast cells in a dose-responsive manner.</p
    corecore