2,930 research outputs found

    The electrorheology of suspensions consisting of Na-Fluorohectorite synthetic clay particles in silicon oil

    Full text link
    Under application of an electric field greater than a triggering electric field Ec0.4E_c \sim 0.4 kV/mm, suspensions obtained by dispersing particles of the synthetic clay fluoro-hectorite in a silicon oil, aggregate into chain- and/or column-like structures parallel to the applied electric field. This micro-structuring results in a transition in the suspensions' rheological behavior, from a Newtonian-like behavior to a shear-thinning rheology with a significant yield stress. This behavior is studied as a function of particle volume fraction and strength of the applied electric field, EE. The steady shear flow curves are observed to scale onto a master curve with respect to EE, in a manner similar to what was recently found for suspensions of laponite clay [42]. In the case of Na-fluorohectorite, the corresponding dynamic yield stress is demonstrated to scale with respect to EE as a power law with an exponent α1.93\alpha \sim 1.93, while the static yield stress inferred from constant shear stress tests exhibits a similar behavior with α1.58\alpha \sim 1.58. The suspensions are also studied in the framework of thixotropic fluids: the bifurcation in the rheology behavior when letting the system flow and evolve under a constant applied shear stress is characterized, and a bifurcation yield stress, estimated as the applied shear stress at which viscosity bifurcation occurs, is measured to scale as EαE^\alpha with α0.5\alpha \sim 0.5 to 0.6. All measured yield stresses increase with the particle fraction Φ\Phi of the suspension. For the static yield stress, a scaling law Φβ\Phi^\beta, with β=0.54\beta = 0.54, is found. The results are found to be reasonably consistent with each other. Their similarities with-, and discrepancies to- results obtained on laponite-oil suspensions are discussed

    A glass spark counter for high rate environments

    Get PDF
    The performance of a glass spark counter prototype, built with glass electrodes of about 1010 Ω cm volume resistivity, is described. The measure

    Potential Benefits of Remote Working on Urban Mobility and Related Environmental Impacts: Results from a Case Study in Italy

    Get PDF
    Remote working is increasingly seen as an effective model in several countries in the last decade, mainly thanks to the development of information and communication technologies in support of common daily working tasks. The emergence of the COVID-19 pandemic has represented a pivotal moment for the adoption of remote working in multiple sectors, with positive effects on the environmental impacts caused by the daily commuting of workers. However, due to the fact that pandemic-induced remote working has represented a major forced experiment on a global scale, and that it has often been imposed rather than chosen by employees, workers’ well-being has not always been ensured. This research work presents an analysis of a wide survey of remote workers in public administrations in four different provinces in Italy, with the aim of assessing the main characteristics of the users and the related environmental benefits. Survey data refer to remote workers before COVID-19, thus representing workers who have freely chosen to work from home for different reasons. The results of this work represent a useful tool with which to support the definition of new remote work strategies that could help policy makers reduce a part of the systematic mobility demand. We have also calculated average energy and emission savings to provide useful indicators for a preliminary estimation of the potential environmental benefits of remote working. Considering the entire sample of respondents, workers who would have commuted at least partially by car have saved on average 6 kg of CO2 per day thanks to remote working (with an average round-trip commuting distance of approximately 35 km). The current results will be supplemented by the results of a new survey underway, aimed at evaluating the differences of remote working experiences during the emergency response to COVID-19

    The OPERA magnetic spectrometer

    Full text link
    The OPERA neutrino oscillation experiment foresees the construction of two magnetized iron spectrometers located after the lead-nuclear emulsion targets. The magnet is made up of two vertical walls of rectangular cross section connected by return yokes. The particle trajectories are measured by high precision drift tubes located before and after the arms of the magnet. Moreover, the magnet steel is instrumented with Resistive Plate Chambers that ease pattern recognition and allow a calorimetric measurement of the hadronic showers. In this paper we review the construction of the spectrometers. In particular, we describe the results obtained from the magnet and RPC prototypes and the installation of the final apparatus at the Gran Sasso laboratories. We discuss the mechanical and magnetic properties of the steel and the techniques employed to calibrate the field in the bulk of the magnet. Moreover, results of the tests and issues concerning the mass production of the Resistive Plate Chambers are reported. Finally, the expected physics performance of the detector is described; estimates rely on numerical simulations and the outcome of the tests described above.Comment: 6 pages, 10 figures, presented at the 2003 IEEE-NSS conference, Portland, OR, USA, October 20-24, 200

    Rider Variables Affecting the Stirrup Directional Force Asymmetry during Simulated Riding Trot

    Get PDF
    Riders' asymmetry may cause back pain in both human and equine athletes. This pilot study aimed at documenting in a simple and quick way asymmetry in riders during a simulation of three different riding positions on wooden horseback using load cells applied on the stirrup leathers and identifying possible associations between riders' asymmetry and their gender, age, level of riding ability, years of riding experience, riding style, motivation of riding, primary discipline and handedness. After completing an interview to obtain the previously mentioned information, 147 riders performed a standardized test on a saddle fixed on a wooden horseback-shaped model. The riding simulation was split into three phases of 1 min each: (1) sit in the saddle, (2) standing in the stirrups and (3) rising trot. The directional force on the left and the right stirrup leathers was recorded every 0.2 s. A paired t-test was performed on the recorded data to test the difference (i.e., asymmetry) in each phase. In phases 1, 2 and 3, 99.3% (53.4% heavier on the right (R)), 98% (52.8% heavier on the left (L)) and 46.3% (51.5% heavier on the left (L)) of the riders were asymmetrical, respectively. Chi-square tests showed a significant association between riding ability and riding experience, but no significant association between reported handedness and calculated leg-sidedness (p > 0.05). Univariate logistic (1: asymmetry, 0: symmetry) regression analysis was performed only on the phase 3 data. One-hand riders were found twice more likely to be asymmetrical than two-hand riders (Odds Ratio (OR): 2.18, Confidence Interval (CI): 1.1-4.29; p = 0.024). This preliminary study confirmed that the majority of the riders are asymmetrical in load distribution on stirrups and suggested the riding style as a possible risk factor for asymmetry

    In-depth description of Electrohydrodynamic conduction pumping of dielectric liquids: physical model and regime analysis

    Get PDF
    In this work, we discuss the fundamental aspects of Electrohydrodynamic (EHD) conduction pumping of dielectric liquids. We build a mathematical model of conduction pumping that can be applied to all sizes, down to microsized pumps. In order to do this, we discuss the relevance of the Electrical Double Layer (EDL) that appears naturally on nonmetallic substrates. In the process, we identify a new dimensionless parameter related to the value of the zeta potential of the substrate-liquid pair, which quantifies the influence of these EDLs on the performance of the pump. This parameter also describes the transition from EHD conduction pumping to electro-osmosis. We also discuss in detail the two limiting working regimes in EHD conduction pumping: ohmic and saturation. We introduce a new dimensionless parameter, accounting for the electric field enhanced dissociation that, along with the conduction number, allows us to identify in which regime the pump operates.Ministerio de Ciencia, Innovación y Universidades PGC2018-099217-B-I0

    The psychological impact of COVID-19 pandemic on patients with neuroendocrine tumors: Between resilience and vulnerability

    Get PDF
    The COVID-19 pandemic has added another layer of complexity to the fears of patients with neuroendocrine tumors (NETs). Little is known regarding the psychological impact of the COVID-19 outbreak on patients with gastroenteropancreatic or bronchopulmonary (BP) NETs. We longitudinally surveyed the mental symptoms and concerns of NET patients during the plateau phase of the first (W1) and second epidemic waves (W2) in Italy. Seven specific constructs (depression, anxiety, stress, health-related quality of life, NET-related quality of life, patient–physician relationship, psychological distress) were investigated using validated screening instruments, including DASS-21, EORTC QLQ-C30, EORTC QLQ GI.NET21, PDRQ9 and IES-R. We enrolled 197 patients (98 males) with a median age of 62 years. The majority of the patients had G1/G2 neoplasms. Some 38% of the patients were on active treatment. At W1, the prevalence of depression, anxiety and stress was 32%, 36% and 26% respectively. The frequency of depression and anxiety increased to 38% and 41% at W2, whereas no modifications were recorded in the frequency of stress. Poor educational status was associated with higher levels of anxiety at both W1 (odds ratio [OR] = 1.33 ± 0.22; p =.07) and W2 (OR = 1.45 ± 0.26; p =.03). Notably, post-traumatic stress symptoms were observed in the 58% of the patients, and both single marital status (OR = 0.16, 95% confidence interval [CI] = 0.06–0.48; p =.0009) and low levels of formal education (OR = 0.47, 95% CI = 0.23–0.99; p =.05) predicted their occurrence. No significant deteriorations of health-related quality of life domains were observed from W1 to W2. High patient care satisfaction was documented despite the changes in health systems resource allocation. NET patients have an increased risk of developing post-traumatic stress symptoms as result of the COVID-19 pandemic. Specific screening measures and psychological interventions should be implemented in NET clinics to prevent, recognize and treat mental distress in this vulnerable population
    corecore