37 research outputs found

    Chemical-neuroanatomical organization of peripheral sensory-efferent systems in the pond snail (Lymnaea stagnalis)

    Get PDF
    Perception and processing of chemical cues are crucial for aquatic gastropods, for proper elaboration of adaptive behavior. The pond snail, Lymnaea stagnalis, is a model species of invertebrate neurobiology, in which peripheral sensory neurons with different morphology and transmitter content have partly been described, but we have little knowledge regarding their functional morphological organization, including their possible peripheral intercellular connections and networks. Therefore the aim of our study was to characterize the sensory system of the tentacles and the lip, as primary sensory regions, and the anterior foot of Lymnaea with special attention to the transmitter content of the sensory neurons, and their relationship to extrinsic elements of the central nervous system. Numerous bipolar sensory cells were demonstrated in the epithelial layer of the peripheral organs, displaying immunoreactivity to antibodies raised against tyrosine hydroxylase, histamine, glutamate and two molluscan type oligopeptides, FMRFamide and Mytilus inhibitory peptide. A subepithelial plexus was formed by extrinsic serotonin and FMRFamide immunoreactive fibers, whereas in deeper regions axon processess of different origin with various immunoreactivities formed networks, too. HPLC-MS assay confirmed the presence of the low molecular weight signal molecules in the three examined areas. Following double-labeling immunohistochemistry, close arrangements were observed, formed by sensory neurons and extrinsic serotonergic (and FMRFamidergic) fibers at axo-dendritic, axo-somatic and axo-axonic levels. Our results suggest the involvement of a much wider repertoire of signal molecules in peripheral sensory processes of Lymnaea, which can locally be modified by central input, hence influencing directly the responses to environmental cues

    Functional dynamics of a single tryptophan residue in a BLUF protein revealed by fluorescence spectroscopy

    Get PDF
    Blue Light Using Flavin (BLUF) domains are increasingly being adopted for use in optogenetic constructs. Despite this, much remains to be resolved on the mechanism of their activation. The advent of unnatural amino acid mutagenesis opens up a new toolbox for the study of protein structural dynamics. The tryptophan analogue, 7-aza-Trp (7AW) was incorporated in the BLUF domain of the Activation of Photopigment and pucA (AppA) photoreceptor in order to investigate the functional dynamics of the crucial W104 residue during photoactivation of the protein. The 7-aza modification to Trp makes selective excitation possible using 310 nm excitation and 380 nm emission, separating the signals of interest from other Trp and Tyr residues. We used Förster energy transfer (FRET) between 7AW and the flavin to estimate the distance between Trp and flavin in both the light- and dark-adapted states in solution. Nanosecond fluorescence anisotropy decay and picosecond fluorescence lifetime measurements for the flavin revealed a rather dynamic picture for the tryptophan residue. In the dark-adapted state, the major population of W104 is pointing away from the flavin and can move freely, in contrast to previous results reported in the literature. Upon blue-light excitation, the dominant tryptophan population is reorganized, moves closer to the flavin occupying a rigidly bound state participating in the hydrogen-bond network around the flavin molecule

    Identification of the vibrational marker of tyrosine cation radical using ultrafast transient infrared spectroscopy of flavoprotein systems

    Get PDF
    Tryptophan and tyrosine radical intermediates play crucial roles in many biological charge transfer processes. Particularly in flavoprotein photochemistry, short-lived reaction intermediates can be studied by the complementary techniques of ultrafast visible and infrared spectroscopy. The spectral properties of tryptophan radical are well established, and the formation of neutral tyrosine radicals has been observed in many biological processes. However, only recently, the formation of a cation tyrosine radical was observed by transient visible spectroscopy in a few systems. Here, we assigned the infrared vibrational markers of the cationic and neutral tyrosine radical at 1483 and 1502 cm−1 (in deuterated buffer), respectively, in a variant of the bacterial methyl transferase TrmFO, and in the native glucose oxidase. In addition, we studied a mutant of AppABLUF blue-light sensor domain from Rhodobacter sphaeroides in which only a direct formation of the neutral radical was observed. Our studies highlight the exquisite sensitivity of transient infrared spectroscopy to low concentrations of specific radicals

    Mitochondrial DNA in the tumour microenvironment activates neutrophils and is associated with worse outcomes in patients with advanced epithelial ovarian cancer

    No full text
    BACKGROUND: Advanced cancer causes necrosis and releases damage-associated molecular patterns (DAMPs). Mitochondrial DAMPs activate neutrophils, including generation of neutrophil extracellular traps (NETs), which are injurious, thrombogenic, and implicated in metastasis. We hypothesised that extracellular mitochondrial DNA (mtDNA) in ascites from patients with epithelial ovarian cancer (EOC) would correlate with worse outcomes. METHODS: Banked ascites supernatants from patients with newly diagnosed advanced EOC were analysed for mtDNA, neutrophil elastase, and activation of healthy donor neutrophils and platelets. TCGA was mined for expression of SELP and ELANE. RESULTS: The highest quartile of ascites mtDNA correlated with reduced progression-free survival (PFS) and a higher likelihood of disease progression within 12-months following primary surgery (n = 68, log-rank, p = 0.0178). NETs were detected in resected tumours. Ascites supernatants chemoattracted neutrophils, induced NETs, and activated platelets. Ascites exposure rendered neutrophils suppressive, based on abrogation of ex vivo stimulated T cell proliferation. Increased SELP mRNA expression correlated with worse overall survival (n = 302, Cox model, p = 0.02). CONCLUSION: In this single-centre retrospective analysis, ascites mtDNA correlated with worse PFS in advanced EOC. Mitochondrial and other DAMPs in ascites may activate neutrophil and platelet responses that facilitate metastasis and obstruct anti-tumour immunity. These pathways are potential prognostic markers and therapeutic targets

    MOESM5 of Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma

    No full text
    Authors’ original file for figure

    MOESM1 of Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma

    No full text
    Additional file 1: Comparative properties and gene inventory of T. reesei, T. virens and T. atroviride. This file contains additional information on genomic properties and selected gene families from the three Trichoderma species comprising 19 tables. Table S1 summarizes the satellite sequences identified in the Trichoderma genomes and four other fungal genomes. Table S2 summarizes manually curated sequence alignments of transposable element families from the Trichoderma genomes. Table S3 lists the total number of CAZy families in Trichoderma and other fungi. Table S4 lists the glycoside hydrolase (GH) families in Trichoderma and other fungi. Table S5 lists the glycosyltransferase (GT) families in Trichoderma and other fungi. Table S6 lists the polysaccharide lyase (PL) families in Trichoderma and other fungi. Table S7 lists the carbohydrate esterase (CE) families in Trichoderma and other fungi. Table S8 lists the carbohydrate-binding module (CBM) families in Trichoderma and other fungi. Table S9 lists the NRPS, PKS and NRPS-PKS proteins in T. atroviride. Table S10 lists NRPS, PKS and NRPS-PKS proteins in T. virens. Table S11 lists the putative insecticidal toxins in Trichoderma. Table S12 lists the cytochrome P450 CYP4/CYP19/CYP26 class E proteins in Trichoderma. Table S13 lists the small-cysteine rich secreted protein from Trichoderma spp. Table S14 lists the most abundant PFAM domains in those genes that are unique to T. atroviride and T. virens and not present in T. reesei. Table S15 surveys the assembly statistics. Table S16 provides gene model support. Table S17 summarizes gene model statistics. Table S18 provides numbers of genes with functional annotation according to KOG, Gene Ontology, and KEGG classifications. Table S19 lists the largest KOG families responsible for metabolism. (XLSX 57 KB
    corecore