1,367 research outputs found

    Harvesting Excitons Through Plasmonic Strong Coupling

    Full text link
    Exciton harvesting is demonstrated in an ensemble of quantum emitters coupled to localized surface plasmons. When the interaction between emitters and the dipole mode of a metallic nanosphere reaches the strong coupling regime, the exciton conductance is greatly increased. The spatial map of the conductance matches the plasmon field intensity profile, which indicates that transport properties can be tuned by adequately tailoring the field of the plasmonic resonance. Under strong coupling, we find that pure dephasing can have detrimental or beneficial effects on the conductance, depending on the effective number of participating emitters. Finally, we show that the exciton transport in the strong coupling regime occurs on an ultrafast timescale given by the inverse Rabi splitting (10 \sim10~fs), orders of magnitude faster than transport through direct hopping between the emitters.Comment: 5 pages, 3 figure

    Comparative study of CXC chemokines modulation in brown trout (Salmo trutta) following infection with a bacterial or viral pathogen

    Get PDF
    Acknowledgements We would like to acknowledge Richard Paley, Tom Hill and Georgina Rimmer for their collaboration during brown trout infection challenges in CEFAS-Weymouth biosecurity facilities. Bartolomeo Gorgoglione, Stephen W. Feist and Nick G. H. Taylor were supported by a DEFRA grant (F1198).Peer reviewedPostprin

    The CALD Youth Census Report 2014

    Get PDF
    The first Australian census data analysis of young people from culturally and linguistically diverse backgroundsProfessor Graeme Hugo, Dr Kelly McDougall, Dr George Tan, Dr Helen Feis

    Swanee River Moon / words by H Pitman Clark

    Get PDF
    Cover: moon trees and the river; Publisher: Leo Feist Inc. (New York)https://egrove.olemiss.edu/sharris_d/1029/thumbnail.jp

    Enhanced Excitation Energy Transfer under Strong Light-Matter Coupling: Insights from Multi-Scale Molecular Dynamics Simulations

    Full text link
    Transfer of excitation energy is a key step in light harvesting and hence of technological relevance for solar energy conversion. In bare organic materials energy transfer proceeds via incoherent hops, which restrict propagation lengths to nanometers. In contrast, energy transport over several micrometers has been observed in the strong coupling regime where excitations hybridise with confined light modes to form polaritons. Because polaritons have group velocity, their propagation should be ballistic and long-ranged. However, experiments indicate that organic polaritons propagate in a diffusive manner and more slowly than their group velocity. Here, we resolve this controversy by means of molecular dynamics simulations of Rhodamine molecules in a Fabry-P\'erot cavity. Our results suggest that polariton propagation is limited by the cavity lifetime and appears diffusive due to reversible population transfers between bright polaritonic states that propagate ballistically at their group velocity, and dark states that are stationary. Furthermore, because long-lived dark states transiently trap the excitation, propagation is observed on timescales beyond the intrinsic polariton lifetime. These atomistic insights not only help to better understand and interpret experimental observations, but also pave the way towards rational design of molecule-cavity systems for achieving coherent long-range energy transport
    corecore