109 research outputs found

    Like trainer, like bot? Inheritance of bias in algorithmic content moderation

    Get PDF
    The internet has become a central medium through which `networked publics' express their opinions and engage in debate. Offensive comments and personal attacks can inhibit participation in these spaces. Automated content moderation aims to overcome this problem using machine learning classifiers trained on large corpora of texts manually annotated for offence. While such systems could help encourage more civil debate, they must navigate inherently normatively contestable boundaries, and are subject to the idiosyncratic norms of the human raters who provide the training data. An important objective for platforms implementing such measures might be to ensure that they are not unduly biased towards or against particular norms of offence. This paper provides some exploratory methods by which the normative biases of algorithmic content moderation systems can be measured, by way of a case study using an existing dataset of comments labelled for offence. We train classifiers on comments labelled by different demographic subsets (men and women) to understand how differences in conceptions of offence between these groups might affect the performance of the resulting models on various test sets. We conclude by discussing some of the ethical choices facing the implementers of algorithmic moderation systems, given various desired levels of diversity of viewpoints amongst discussion participants.Comment: 12 pages, 3 figures, 9th International Conference on Social Informatics (SocInfo 2017), Oxford, UK, 13--15 September 2017 (forthcoming in Springer Lecture Notes in Computer Science

    The anatomical distance of functional connections predicts brain network topology in health and schizophrenia.

    Get PDF
    The human brain is a topologically complex network embedded in anatomical space. Here, we systematically explored relationships between functional connectivity, complex network topology, and anatomical (Euclidean) distance between connected brain regions, in the resting-state functional magnetic resonance imaging brain networks of 20 healthy volunteers and 19 patients with childhood-onset schizophrenia (COS). Normal between-subject differences in average distance of connected edges in brain graphs were strongly associated with variation in topological properties of functional networks. In addition, a club or subset of connector hubs was identified, in lateral temporal, parietal, dorsal prefrontal, and medial prefrontal/cingulate cortical regions. In COS, there was reduced strength of functional connectivity over short distances especially, and therefore, global mean connection distance of thresholded graphs was significantly greater than normal. As predicted from relationships between spatial and topological properties of normal networks, this disorder-related proportional increase in connection distance was associated with reduced clustering and modularity and increased global efficiency of COS networks. Between-group differences in connection distance were localized specifically to connector hubs of multimodal association cortex. In relation to the neurodevelopmental pathogenesis of schizophrenia, we argue that the data are consistent with the interpretation that spatial and topological disturbances of functional network organization could arise from excessive "pruning" of short-distance functional connections in schizophrenia.PEV is supported by the Medical Research Council (grant number MR/K020706/1). This work was supported by the Neuroscience in Psychiatry Network (NSPN) which is funded by a Wellcome Trust strategy award to the University of Cambridge and University College London. ETB is employed half-time by the University of Cambridge and half-time by GlaxoSmithKline; he holds stock in GSK.This is the final published version. It first appeared at http://onlinelibrary.wiley.com/doi/10.1111/jcpp.12365/full

    At the heart of morality lies neuro-visceral integration: lower cardiac vagal tone predicts utilitarian moral judgment

    Get PDF
    To not harm others is widely considered the most basic element of human morality. The aversion to harm others can be either rooted in the outcomes of an action (utilitarianism) or reactions to the action itself (deontology). We speculated that the human moral judgments rely on the integration of neural computations of harm and visceral reactions. The present research examined whether utilitarian or deontological aspects of moral judgment are associated with cardiac vagal tone, a physiological proxy for neuro-visceral integration. We investigated the relationship between cardiac vagal tone and moral judgment by using a mix of moral dilemmas, mathematical modeling and psychophysiological measures. An index of bipolar deontology-utilitarianism was correlated with resting heart rate variability (HRV)—an index of cardiac vagal tone—such that more utilitarian judgments were associated with lower HRV. Follow-up analyses using process dissociation, which independently quantifies utilitarian and deontological moral inclinations, provided further evidence that utilitarian (but not deontological) judgments were associated with lower HRV. Our results suggest that the functional integration of neural and visceral systems during moral judgments can restrict outcome-based, utilitarian moral preferences. Implications for theories of moral judgment are discussed

    Identification of DNA hypermethylation of SOX9 in association with bladder cancer progression using CpG microarrays

    Get PDF
    CpG island arrays represent a high-throughput epigenomic discovery platform to identify global disease-specific promoter hypermethylation candidates along bladder cancer progression. DNA obtained from 10 pairs of invasive bladder tumours were profiled vs their respective normal urothelium using differential methylation hybridisation on custom-made CpG arrays (n=12 288 clones). Promoter hypermethylation of 84 clones was simultaneously shown in at least 70% of the tumours. SOX9 was selected for further validation by bisulphite genomic sequencing and methylation-specific polymerase chain reaction in bladder cancer cells (n=11) and primary bladder tumours (n=101). Hypermethylation was observed in bladder cancer cells and associated with lack of gene expression, being restored in vitro by a demethylating agent. In primary bladder tumours, SOX9 hypermethylation was present in 56.4% of the cases. Moreover, SOX9 hypermethylation was significantly associated with tumour grade and overall survival. Thus, this high-throughput epigenomic strategy has served to identify novel hypermethylated candidates in bladder cancer. In vitro analyses supported the role of methylation in silencing SOX9 gene. The association of SOX9 hypermethylation with tumour progression and clinical outcome suggests its relevant clinical implications at stratifying patients affected with bladder cancer

    Trans youth, science and art: creating (trans) gendered space

    Get PDF
    This article is based on empirical research which was undertaken as part of the Sci:dentity project funded by the Wellcome Trust. Sci:dentity was a year-long participatory arts project which ran between March 2006 and March 2007. The project offered 18 young transgendered and transsexual people, aged between 14 and 22, an opportunity to come together to explore the science of sex and gender through art. This article focuses on four creative workshops which ran over two months, being the ‘creative engagement’ phase of the project. It offers an analysis of the transgendered space created which was constituted through the logics of recognition, creativity and pedagogy. Following this, the article explores the ways in which these transgendered and transsexual young people navigate gendered practices, and the gendered spaces these practices constitute, in their everyday lives shaped by gendered and sexual normativities. It goes on to consider the significance of trans virtual and physical cultural spaces for the development of trans young peoples' ontological security and their navigations and negotiations of a gendered social world

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information about HabEx can be found here: https://www.jpl.nasa.gov/habex

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Social Bonding and Nurture Kinship: Compatibility between Cultural and Biological Approaches

    Full text link
    corecore