29 research outputs found
Misexpression of a chloroplast aspartyl protease leads to severe growth defects and alters carbohydrate metabolism in Arabidopsis
The crucial role of carbohydrate in plant growth and morphogenesis is widely recognized. In this study, we describe the characterization of nana, a dwarf Arabidopsis (Arabidopsis thaliana) mutant impaired in carbohydrate metabolism. We show that the nana dwarf phenotype was accompanied by altered leaf morphology and a delayed flowering time. Our genetic and molecular data indicate that the mutation in nana is due to a transfer DNA insertion in the promoter region of a gene encoding a chloroplast-located aspartyl protease that alters its pattern of expression. Overexpression of the gene (oxNANA) phenocopies the mutation. Both nana and oxNANA display alterations in carbohydrate content, and the extent of these changes varies depending on growth light intensity. In particular, in low light, soluble sugar levels are lower and do not show the daily fluctuations observed in wild-type plants. Moreover, nana and oxNANA are defective in the expression of some genes implicated in sugar metabolism and photosynthetic light harvesting. Interestingly, some chloroplast-encoded genes as well as genes whose products seem to be involved in retrograde signaling appear to be down-regulated. These findings suggest that the NANA aspartic protease has an important regulatory function in chloroplasts that not only influences photosynthetic carbon metabolism but also plastid and nuclear gene expression
Microreact: visualizing and sharing data for genomic epidemiology and phylogeography
Visualization is frequently used to aid our interpretation of complex datasets. Within microbial genomics, visualizing the relationships between multiple genomes as a tree provides a framework onto which associated data (geographical, temporal, phenotypic and epidemiological) are added to generate hypotheses and to explore the dynamics of the system under investigation. Selected static images are then used within publications to highlight the key findings to a wider audience. However, these images are a very inadequate way of exploring and interpreting the richness of the data. There is, therefore, a need for flexible, interactive software that presents the population genomic outputs and associated data in a user-friendly manner for a wide range of end users, from trained bioinformaticians to front-line epidemiologists and health workers. Here, we present Microreact, a web application for the easy visualization of datasets consisting of any combination of trees, geographical, temporal and associated metadata. Data files can be uploaded to Microreact directly via the web browser or by linking to their location (e.g. from Google Drive/Dropbox or via API), and an integrated visualization via trees, maps, timelines and tables provides interactive querying of the data. The visualization can be shared as a permanent web link among collaborators, or embedded within publications to enable readers to explore and download the data. Microreact can act as an end point for any tool or bioinformatic pipeline that ultimately generates a tree, and provides a simple, yet powerful, visualization method that will aid research and discovery and the open sharing of datasets
Notch Lineages and Activity in Intestinal Stem Cells Determined by a New Set of Knock-In Mice
The conserved role of Notch signaling in controlling intestinal cell fate specification and homeostasis has been extensively studied. Nevertheless, the precise identity of the cells in which Notch signaling is active and the role of different Notch receptor paralogues in the intestine remain ambiguous, due to the lack of reliable tools to investigate Notch expression and function in vivo. We generated a new series of transgenic mice that allowed us, by lineage analysis, to formally prove that Notch1 and Notch2 are specifically expressed in crypt stem cells. In addition, a novel Notch reporter mouse, Hes1-EmGFPSAT, demonstrated exclusive Notch activity in crypt stem cells and absorptive progenitors. This roster of knock-in and reporter mice represents a valuable resource to functionally explore the Notch pathway in vivo in virtually all tissues
Rapid Genomic Characterization and Global Surveillance of Klebsiella Using Pathogenwatch.
BACKGROUND: Klebsiella species, including the notable pathogen K. pneumoniae, are increasingly associated with antimicrobial resistance (AMR). Genome-based surveillance can inform interventions aimed at controlling AMR. However, its widespread implementation requires tools to streamline bioinformatic analyses and public health reporting. METHODS: We developed the web application Pathogenwatch, which implements analytics tailored to Klebsiella species for integration and visualization of genomic and epidemiological data. We populated Pathogenwatch with 16 537 public Klebsiella genomes to enable contextualization of user genomes. We demonstrated its features with 1636 genomes from 4 low- and middle-income countries (LMICs) participating in the NIHR Global Health Research Unit (GHRU) on AMR. RESULTS: Using Pathogenwatch, we found that GHRU genomes were dominated by a small number of epidemic drug-resistant clones of K. pneumoniae. However, differences in their distribution were observed (eg, ST258/512 dominated in Colombia, ST231 in India, ST307 in Nigeria, ST147 in the Philippines). Phylogenetic analyses including public genomes for contextualization enabled retrospective monitoring of their spread. In particular, we identified hospital outbreaks, detected introductions from abroad, and uncovered clonal expansions associated with resistance and virulence genes. Assessment of loci encoding O-antigens and capsule in K. pneumoniae, which represent possible vaccine candidates, showed that 3 O-types (O1-O3) represented 88.9% of all genomes, whereas capsule types were much more diverse. CONCLUSIONS: Pathogenwatch provides a free, accessible platform for real-time analysis of Klebsiella genomes to aid surveillance at local, national, and global levels. We have improved representation of genomes from GHRU participant countries, further facilitating ongoing surveillance
Humans and Robots in Times of Quarantine Based on First-Hand Accounts
A quarantine is an effective measure in order to contain a disease and it is needed to be used more often in current times. Quarantine forces people to have minimal to no social contact with other humans for a certain period of time. Past work says this isolation can have a serious psychological impact on people’s lives, which can have dramatic consequences. Research can help find the positive and negative experiences of people in quarantine, in order to determine their needs. But how do people respond to quarantine according to their own self accounts? We look to a video platform as a unique opportunity to explore this question. Robots can be used in times of quarantine so isolation can be maintained. However, these robots should be matching the actual needs of the people in quarantine in order to have an effect. This research will use a content analysis of first-hand accounts of people in quarantine in order to find their experiences and needs. After that, there will be an analysis of robots that are used in times of quarantine. Lastly, these two analyses will be used to find out if the robots match the needs of the people in quarantine. We report on two major components to first-hand social media quarantine accounts: emotional response and procedural explanations provided by detainees, and explore potential reasons for them choosing to share these types of content. On top of that, we report on robots that are mentioned by social media, the tasks that they do, and the needs they fulfill. This research will expand on the current knowledge domain of needs in quarantine and will also add to the knowledge domain of the effectiveness of robots in quarantine
Legibility of robot approach trajectories with minimum jerk path planning
When a robot approaches a person, the chosen trajectory ideally informs the person not only about the robot’s intended target location, but also its intended orientation. However, planning a straight line to the goal location does not guarantee a correct final orientation, potentially causing confusion as the robot eventually rotates towards its unsuspecting target. One method that could remedy this problem is minimum jerk path planning, which results in the smoothest possible path that ends in the pre-specified final orientation. The technique is already widely used in robotic arm motion planning, but existing work is lacking for regular path planning. The aim of the current study is to implement minimum jerk path planning for the Nao robot and to evaluate the potential benefit for human observers to infer the intended target of the robot. Results show that minimum jerk path planning significantly improves people’s recognition of the robot’s destination compared to straight line path planning. Meanwhile, the perceived likeability and human likeness of the robot remain the same, suggesting that implementing smooth robot path planning that includes the final orientation leads to more predictable robot approaching behaviour. Keywords Human-aware navigation Path planning Robot intention Human-robot interactio
Microreact: visualizing and sharing data for genomic epidemiology and phylogeography
Visualization is frequently used to aid our interpretation of complex datasets. Within microbial genomics, visualizing the relationships between multiple genomes as a tree provides a framework onto which associated data (geographical, temporal, phenotypic and epidemiological) are added to generate hypotheses and to explore the dynamics of the system under investigation. Selected static images are then used within publications to highlight the key findings to a wider audience. However, these images are a very inadequate way of exploring and interpreting the richness of the data. There is, therefore, a need for flexible, interactive software that presents the population genomic outputs and associated data in a user-friendly manner for a wide range of end users, from trained bioinformaticians to front-line epidemiologists and health workers. Here, we present Microreact, a web application for the easy visualization of datasets consisting of any combination of trees, geographical, temporal and associated metadata. Data files can be uploaded to Microreact directly via the web browser or by linking to their location (e.g. from Google Drive/Dropbox or via API), and an integrated visualization via trees, maps, timelines and tables provides interactive querying of the data. The visualization can be shared as a permanent web link among collaborators, or embedded within publications to enable readers to explore and download the data. Microreact can act as an end point for any tool or bioinformatic pipeline that ultimately generates a tree, and provides a simple, yet powerful, visualization method that will aid research and discovery and the open sharing of datasets
Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread
EuSCAPE Working Group: Portugal - Manuela Caniça, Vera ManageiroPublic health interventions to control the current epidemic of carbapenem-resistant Klebsiella pneumoniae rely on a comprehensive understanding of its emergence and spread over a wide range of geographical scales. We analysed the genome sequences and epidemiological data of >1,700 K. pneumoniae samples isolated from patients in 244 hospitals in 32 countries during the European Survey of Carbapenemase-Producing Enterobacteriaceae. We demonstrate that carbapenemase acquisition is the main cause of carbapenem resistance and that it occurred across diverse phylogenetic backgrounds. However, 477 of 682 (69.9%) carbapenemase-positive isolates are concentrated in four clonal lineages, sequence types 11, 15, 101, 258/512 and their derivatives. Combined analysis of the genetic and geographic distances between isolates with different β-lactam resistance determinants suggests that the propensity of K. pneumoniae to spread in hospital environments correlates with the degree of resistance and that carbapenemase-positive isolates have the highest transmissibility. Indeed, we found that over half of the hospitals that contributed carbapenemase-positive isolates probably experienced within-hospital transmission, and interhospital spread is far more frequent within, rather than between, countries. Finally, we propose a value of 21 for the number of single nucleotide polymorphisms that optimizes the discrimination of hospital clusters and detail the international spread of the successful epidemic lineage, ST258/512.This work was funded by The Centre for Genomic Pathogen Surveillance,
Wellcome Genome Campus, Wellcome (grant nos. 098051 and 099202) and the NIHR
Global Health Research Unit on Genomic Surveillance of Antimicrobial Resistance
(NIHR 16/136/111). The EuSCAPE project was funded by ECDC through a specific
framework contract (ECDC/2012/055) following an open call for tender (OJ/25/04/2012-PROC/2012/036).info:eu-repo/semantics/publishedVersio