5,898 research outputs found

    Theory of high energy features in angle-resolved photo-emission spectra of hole-doped cuprates

    Full text link
    The recent angle-resolved photoemission measurements performed up to binding energies of the order of 1eV reveals a very robust feature: the nodal quasi-particle dispersion breaks up around 0.3-0.4eV and reappears around 0.6-0.8eV. The intensity map in the energy-momentum space shows a waterfall like feature between these two energy scales. We argue and numerically demonstrate that these experimental features follow naturally from the strong correlation effects built in the familiar t-J model, and reflect the connection between the fermi level and the lower Hubbard band. The results were obtained by a mean field theory that effectively projects electrons by quantum interference between two bands of fermions instead of binding slave particles.Comment: 5 pages 2 fig

    The Characteristics of Residual Strength of Silt Under Liquefaction Conditions

    Get PDF
    Silt soil is defined as a soil whose fine particles (D50 \u3c 0.005mm) content is from 3% to 15%. The Tangshan earthquake of 1976 had a magnitude of 7.8 and caused the liquefaction of silt soil in large areas in Tianjin City. The seismic intensity at Tianjin was 8° in downtown. Currently the same criterion for initial liquefaction is applied to silt and sand, e.g., the development of pore pressure, u, equal to the effective confining pressure σ0\u27. However, in silt residual strength still exists because of cohesion due to the finest of the particles even when u = σ0\u27 due to shaking. The authors employed a superimposed ring shear device to study the characteristics of residual shear strength of silts with different fine particle contents and with various pore pressure ratios, u/ σv\u27 under both dynamic and static loads

    Effects of noise suppression and envelope dynamic range compression on the intelligibility of vocoded sentences for a tonal language

    Get PDF
    Vocoder simulation studies have suggested that the carrier signal type employed affects the intelligibility of vocoded speech. The present work further assessed how carrier signal type interacts with additional signal processing, namely, single-channel noise suppression and envelope dynamic range compression, in determining the intelligibility of vocoder simulations. In Experiment 1, Mandarin sentences that had been corrupted by speech spectrum-shaped noise (SSN) or two-talker babble (2TB) were processed by one of four single-channel noise-suppression algorithms before undergoing tone-vocoded (TV) or noise-vocoded (NV) processing. In Experiment 2, dynamic ranges of multiband envelope waveforms were compressed by scaling of the mean-removed envelope waveforms with a compression factor before undergoing TV or NV processing. TV Mandarin sentences yielded higher intelligibility scores with normal-hearing (NH) listeners than did noise-vocoded sentences. The intelligibility advantage of noise-suppressed vocoded speech depended on the masker type (SSN vs 2TB). NV speech was more negatively influenced by envelope dynamic range compression than was TV speech. These findings suggest that an interactional effect exists between the carrier signal type employed in the vocoding process and envelope distortion caused by signal processing

    Controlling Excitations Inversion of a Cooper Pair Box Interacting with a Nanomechanical Resonator

    Full text link
    We investigate the action of time dependent detunings upon the excitation inversion of a Cooper pair box interacting with a nanomechanical resonator. The method employs the Jaynes-Cummings model with damping, assuming different decay rates of the Cooper pair box and various fixed and t-dependent detunings. It is shown that while the presence of damping plus constant detunings destroy the collapse/revival effects, convenient choices of time dependent detunings allow one to reconstruct such events in a perfect way. It is also shown that the mean excitation of the nanomechanical resonator is more robust against damping of the Cooper pair box for convenient values of t-dependent detunings.Comment: 11 pages, 5 figure

    Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol

    Full text link
    The participant attack is the most serious threat for quantum secret-sharing protocols. We present a method to analyze the security of quantum secret-sharing protocols against this kind of attack taking the scheme of Hillery, Buzek, and Berthiaume (HBB) [Phys. Rev. A 59 1829 (1999)] as an example. By distinguishing between two mixed states, we derive the necessary and sufficient conditions under which a dishonest participant can attain all the information without introducing any error, which shows that the HBB protocol is insecure against dishonest participants. It is easy to verify that the attack scheme of Karlsson, Koashi, and Imoto [Phys. Rev. A 59, 162 (1999)] is a special example of our results. To demonstrate our results further, we construct an explicit attack scheme according to the necessary and sufficient conditions. Our work completes the security analysis of the HBB protocol, and the method presented may be useful for the analysis of other similar protocols.Comment: Revtex, 7 pages, 3 figures; Introduction modifie

    Finite density phase transition of QCD with Nf=4N_f=4 and Nf=2N_f=2 using canonical ensemble method

    Full text link
    In a progress toward searching for the QCD critical point, we study the finite density phase transition of Nf=4N_f = 4 and 2 lattice QCD at finite temperature with the canonical ensemble approach. We develop a winding number expansion method to accurately project out the particle number from the fermion determinant which greatly extends the applicable range of baryon number sectors to make the study feasible. Our lattice simulation was carried out with the clover fermions and improved gauge action. For a given temperature, we calculate the baryon chemical potential from the canonical approach to look for the mixed phase as a signal for the first order phase transition. In the case of Nf=4N_f=4, we observe an "S-shape" structure in the chemical potential-density plane due to the surface tension of the mixed phase in a finite volume which is a signal for the first order phase transition. We use the Maxwell construction to determine the phase boundaries for three temperatures below TcT_c. The intersecting point of the two extrapolated boundaries turns out to be at the expected first order transition point at TcT_c with μ=0\mu = 0. This serves as a check for our method of identifying the critical point. We also studied the Nf=2N_f =2 case, but do not see a signal of the mixed phase for temperature as low as 0.83 TcT_c.Comment: 28 pages, 11 figures,references added, final versio

    Size-Fractionated Nitrogen Uptake Measurements in the Equatorial Pacific and Confirmation of the Low Si-High-Nitrate Low-Chlorophyll Condition

    Get PDF
    The equatorial Pacific Ocean is the largest natural source of CO(2) to the atmosphere, and it significantly impacts the global carbon cycle. Much of the large flux of upwelled CO(2) to the atmosphere is due to incomplete use of the available nitrate (NO(3)) and low net productivity. This high-nutrient low-chlorophyll (HNLC) condition of the equatorial upwelling zone (EUZ) has been interpreted from modeling efforts to be due to low levels of silicate ( Si( OH) 4) that limit the new production of diatoms. These ideas were incorporated into an ecosystem model, CoSINE. This model predicted production by the larger phytoplankton and the picoplankton and effects on air-sea CO(2) fluxes in the Pacific Ocean. However, there were no size-fractionated rates available for verification. Here we report the first size-fractionated new and regenerated production rates (obtained with (15)N - NO(3) and (15)N - NH(4) incubations) for the EUZ with the objective of validating the conceptual basis and functioning of the CoSINE model. Specifically, the larger phytoplankton ( with cell diameters \u3e 5 mu m) had greater rates of new production and higher f-ratios (i.e., the proportion of NO(3) to the sum of NO(3) and NH(4) uptake) than the picoplankton that had high rates of NH(4) uptake and low f-ratios. The way that the larger primary producers are regulated in the EUZ is discussed using a continuous chemostat approach. This combines control of Si(OH)(4) production by supply rate (bottom-up) and control of growth rate ( or dilution) by grazing ( top-down control)

    The CO Molecular Outflows of IRAS 16293-2422 Probed by the Submillimeter Array

    Full text link
    We have mapped the proto-binary source IRAS 16293-2422 in CO 2-1, 13CO 2-1, and CO 3-2 with the Submillimeter Array (SMA). The maps with resolution of 1".5-5" reveal a single small scale (~3000 AU) bipolar molecular outflow along the east-west direction. We found that the blueshifted emission of this small scale outflow mainly extends to the east and the redshifted emission to the west from the position of IRAS 16293A. A comparison with the morphology of the large scale outflows previously observed by single-dish telescopes at millimeter wavelengths suggests that the small scale outflow may be the inner part of the large scale (~15000 AU) E-W outflow. On the other hand, there is no clear counterpart of the large scale NE-SW outflow in our SMA maps. Comparing analytical models to the data suggests that the morphology and kinematics of the small scale outflow can be explained by a wide-angle wind with an inclination angle of ~30-40 degrees with respect to the plane of the sky. The high resolution CO maps show that there are two compact, bright spots in the blueshifted velocity range. An LVG analysis shows that the one located 1" to the east of source A is extremely dense, n(H_2)~10^7 cm^-3, and warm, T_kin >55 K. The other one located 1" southeast of source B has a higher temperature of T_kin >65 K but slightly lower density of n(H_2)~10^6 cm^-3. It is likely that these bright spots are associated with the hot core-like emission observed toward IRAS 16293. Since both two bright spots are blueshifted from the systemic velocity and are offset from the protostellar positions, they are likely formed by shocks.Comment: 27 pages, 8 figures, accepted for publication in ApJ, minor typos correcte
    corecore