119 research outputs found

    Magnetohydrodynamic code for gravitationally-stratified media

    Get PDF
    Aims. We describe a newly-developed magnetohydrodynamic (MHD) code with the capacity to simulate the interaction of any arbitrary perturbation (i.e., not necessarily limited to the linearised limit) with a magnetohydrostatic equilibrium background. Methods. By rearranging the terms in the system of MHD equations and explicitly taking into account the magnetohydrostatic equilibrium condition, we define the equations governing the perturbations that describe the deviations from the background state of plasma for the density, internal energy and magnetic field. We found it was advantageous to use this modified form of the MHD equations for numerical simulations of physical processes taking place in a stable gravitationally-stratified plasma. The governing equations are implemented in a novel way in the code. Sub-grid diffusion and resistivity are applied to ensure numerical stability of the computed solution of the MHD equations. We apply a fourth-order central difference scheme to calculate the spatial derivatives, and implement an arbitrary Runge-Kutta scheme to advance the solution in time. Results. We have built the proposed method, suitable for strongly-stratified magnetised plasma, on the base of the well-documented Versatile Advection Code (VAC) and performed a number of one- and multi-dimensional hydrodynamic and MHD tests to demonstrate the feasibility and robustness of the code for applications to astrophysical plasmas

    Photospheric high-frequency acoustic power excess in sunspot umbra: signature of magneto-acoustic modes

    Get PDF
    We present observational evidence for the presence of MHD waves in the solar photosphere deduced from SOHO/MDI Dopplergram velocity observations. The magneto-acoustic perturbations are observed as acoustic power enhancement in the sunspot umbra at high-frequency bands in the velocity component perpendicular to the magnetic field. We use numerical modelling of wave propagation through localised non-uniform magnetic field concentration along with the same filtering procedure as applied to the observations to identify the observed waves. Guided by the results of the numerical simulations we classify the observed oscillations as magneto-acoustic waves excited by the trapped sub-photospheric acoustic waves. We consider the potential application of the presented method as a diagnostic tool for magnetohelioseismology.Comment: 6 pages, 5 figures, to appear in Annales Geophysica

    "Explosively growing" vortices of unstably stratified atmosphere

    Get PDF
    ©2016. American Geophysical Union.A new type of "explosively growing" vortex structure is investigated theoretically in the framework of ideal fluid hydrodynamics. It is shown that vortex structures may arise in convectively unstable atmospheric layers containing background vorticity. From an exact analytical vortex solution the vertical vorticity structure and toroidal speed are derived and analyzed. The assumption that vorticity is constant with height leads to a solution that grows explosively when the flow is inviscid. The results shown are in agreement with observations and laboratory experiment

    Observational Evidence of Sausage-Pinch Instability in Solar Corona by SDO/AIA

    Get PDF
    We present the first observational evidence of the evolution of sausage-pinch instability in Active Region 11295 during a prominence eruption using data recorded on 12 September 2011 by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). We have identified a magnetic flux tube visible in AIA 304 \AA\ that shows curvatures on its surface with variable cross-sections as well as enhanced brightness. These curvatures evolved and thereafter smoothed out within a time-scale of a minute. The curved locations on the flux tube exhibit a radial outward enhancement of the surface of about 1-2 Mm (factor of 2 larger than the original thickness of the flux tube) from the equilibrium position. AIA 193 \AA\ snapshots also show the formation of bright knots and narrow regions inbetween at the four locations as that of 304 \AA\ along the flux tube where plasma emission is larger compared to the background. The formation of bright knots over an entire flux tube as well as the narrow regions in < 60 s may be the morphological signature of the sausage instability. We also find the flows of the confined plasma in these bright knots along the field lines, which indicates the dynamicity of the flux tube that probably causes the dominance of the longitudinal field component over short temporal scales. The observed longitudinal motion of the plasma frozen in the magnetic field lines further vanishes the formed curvatures and plasma confinements as well as growth of instability to stablize the flux tube.Comment: 12 pages, 5 figure

    Modelling 3D magnetic networks in a realistic solar atmosphere

    Get PDF
    This is the final version. Available from OUP via the DOI in this recordThe magnetic network extending from the photosphere (solar radius ≃ R☉ ) to lower corona (R☉ + 10Mm) plays an important role in the heating mechanisms of the solar atmosphere. Here we further develop the models with realistic open magnetic flux tubes of the authors in order to model more complicated configurations. Closed magnetic loops, and combinations of closed and open magnetic flux tubes are modelled. These are embedded within a stratified atmosphere, derived from observationally motivated semi-empirical and data-driven models subject to solar gravity and capable of spanning from the photosphere up into the chromosphere and lower corona. Constructing a magnetic field comprising self-similar magnetic flux tubes, an analytic solution for the kinetic pressure and plasma density is derived. Combining flux tubes of opposite polarity it is possible to create a steady background magnetic field configuration modelling a solar atmosphere exhibiting realistic stratification. The result can be applied to SOHO/MDI and SDO/HMI and other magnetograms from the solar surface, upon which photospheric motions can be simulated to explore the mechanism of energy transport. We demonstrate this powerful and versatile method with an application to Helioseismic and Magnetic Imager data.Academy of FinlandScience and Technology Facilities Council (STFC

    3D Simulations of Magnetohydrodynamic Waves in the Magnetized Solar Atmosphere

    Get PDF
    We present results of three-dimensional numerical simulations of magnetohydrodynamic (MHD) wave propagation in a solar magnetic flux tube. Our study aims at understanding the properties of a range of MHD wave modes generated by different photospheric motions. We consider two scenarios observed in the lower solar photosphere, namely, granular buffeting and vortex-like motion, among the simplest mechanism for the generation of waves within a strong, localized magnetic flux concentration. We show that granular buffeting is likely to generate stronger slow and fast magnetoacoustic waves as compared to swirly motions. Correspondingly, the energy flux transported differs as a result of the driving motions. We also demonstrate that the waves generated by granular buffeting are likely to manifest in stronger emission in the chromospheric network. We argue that different mechanisms of wave generation are active during the evolution of a magnetic element in the intergranular lane, resulting in temporally varying emission at chromospheric heights.Comment: Appeared in ApJ, 11 pages, 12 figure
    corecore