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Abstract

Using numerical simulations, we show that jets with features of type II spicules and cool coronal jets
corresponding to temperatures of 104 K can be formed as a result of magnetic reconnection in a scenario with
magnetic resistivity. For this, we model the low chromosphere–corona region using the C7 equilibrium solar
atmosphere model, assuming that resistive MHD rules the dynamics of the plasma. The magnetic field
configurations we analyze correspond to two neighboring loops with opposite polarity. The formation of a high-
speed and sharp structure depends on the separation of the loops’ feet. We analyze the cases where the magnetic
field strength of the two loops is equal and different. In the first case, with a symmetric configuration the jets rise
vertically, whereas in an asymmetric configuration the structure shows an inclination. With a number of
simulations carried out under a 2.5D approach, we explore various properties of the excited jets, namely,
inclination, lifetime, and velocity. The parameter space involves a magnetic field strength between 20 and 40 G,
and the resistivity is assumed to be uniform with a constant value of the order W- m10 2 · .
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1. Introduction

Magnetic reconnection is a topological reconfiguration of the
magnetic field caused by changes in the connectivity of its field
lines (e.g., Priest 1984, p. 171; Priest et al. 2000). It is also a
mechanism of the conversion of magnetic energy into thermal
and kinetic energy of plasma when two antiparallel magnetic
fields encounter and reconnect with each other. Magnetic
reconnection can occur in the chromosphere, photosphere, and
even the convection zone. In particular, the chromosphere has a
very dynamical environment where magnetic features such as

aH upward flow events (e.g., Chae et al. 1998) and erupting
mini-filaments (e.g., Wang et al. 2000) take place. The
dynamics of the chromosphere at the limb region is dominated
by spicules (e.g., Beckers 1968) and related flows such as
mottles and fibrils on the disk (e.g., Hansteen et al. 2006; De
Pontieu et al. 2007a). Spicular structures are also visible at the
limb in many spectral lines at the transition region temperatures
(e.g., Mariska 1992; Wilhelm 2000), and some observations
suggest that coronal dynamics are linked to spicule-like jets
(e.g., McIntosh et al. 2007; De Pontieu et al. 2011; Tsiropoula
et al. 2012; Skogsrud et al. 2015; Tavabi et al. 2015; Narang
et al. 2016). With the large improvement in spatiotemporal
stability and resolution given by the Hinode satellite (e.g.,
Kosugi et al. 2007), and with the Swedish 1 m Solar Telescope
(e.g., Scharmer et al. 2008), two classes of spicules were
defined in terms of their different dynamics and timescales
(e.g., De Pontieu et al. 2007c).

The so-called type I spicules have lifetimes of 3–10 minutes,
achieve speeds of 10–30 km s−1, and reach heights of 2–9Mm
(e.g., Beckers 1968; Suematsu et al. 1995), and they typically
involve upward motion followed by downward motion. Shibata
& Suematsu (1982) and Shibata et al. (1982) studied in detail
the propagating shocks using 1D models. Hansteen et al.
(2006), De Pontieu et al. (2007a), and Heggland et al. (2007)

studied the propagation of shocks moving upward, passing
through the upper chromosphere and transition region toward
the corona. They also describe how the spicule-driving shocks
can be generated by a variety of processes, such as collapsing
granules, p-modes, and dissipation of magnetic energy in the
photosphere and lower chromosphere (e.g., Martínez-Sykora
et al. 2009). Matsumoto & Shibata (2010) state that spicules
can be driven by resonant Alfvén waves generated in the
photosphere and confined in a cavity between the photosphere
and the transition region. There are other papers on numerical
simulations of type I spicule formation (e.g., Murawski &
Zaqarashvili 2010; Murawski et al. 2011), where the authors
solve the 2D ideal MHD equations and perturb the velocity
field in order to stimulate the formation of type I spicules and
macrospicules. Furthermore, Scullion et al. (2011) simulate the
formation of the wave-driven type I spicule phenomena in 3D,
the transmission of acoustic waves from the lower chromo-
sphere to the corona, and the formation of a Transition Region
Quake.
Type II spicules are observed in Ca II and Hα. These spicules

have lifetimes of the order of 150 s, in contrast with type I
spicules, which have lifetimes of 3–10 minutes; they are also
more violent, with upward velocities of order 50–100 km s−1,
and reach greater heights. They usually only exhibit upward
motion (e.g., De Pontieu et al. 2007b), followed by a fast
fading in chromospheric lines without an observed downfall.
Spicules of type II, which are seen in the Ca II band of Hinode,
fade within timescales of the order of a few tenths of a second
(e.g., De Pontieu et al. 2007a). The type II spicules observed on
the solar disk are dubbed “Rapid Blueshifted Events” (RBEs;
e.g., Langangen et al. 2008; Rouppe van der Voort et al. 2009).
These show strong Doppler-blueshifted lines in the region from
the middle to the upper chromosphere. The RBEs are linked
with asymmetries in the transition region and coronal spectral
line profiles (e.g., De Pontieu et al. 2009). In addition, the
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lifetime of RBEs suggests that they are heated with at least
transition region temperatures (e.g., De Pontieu et al. 2007c;
Rouppe van der Voort et al. 2009). Type II spicules also show
transverse motions with amplitudes of 10–30 km s−1 and
periods of 100–500 s (e.g., Tomczyk et al. 2007; McIntosh
et al. 2011; Zaqarashvili & Erdélyi 2009), which are interpreted
as upward- or downward-propagating Alfvénic waves (e.g.,
Okamoto & De Pontieu 2011; Tavabi et al. 2015b) or MHD
kink mode waves (e.g., He et al. 2009; McLaughlin et al. 2012;
Kuridze et al. 2012).

As mentioned above, there are several theoretical and
observational results with regard to type II spicules, but there
is little consensus about the origin of type II spicules and the
source of their transverse oscillations. Some possibilities
discussed suggest that type II spicules are due to the magnetic
reconnection process (e.g., Isobe et al. 2008; De Pontieu et al.
2007c; Archontis et al. 2010), oscillatory reconnection process
(e.g., Heggland et al. 2009; McLaughlin et al. 2012), strong
Lorentz force (e.g., Martínez-Sykora et al. 2011), Lorentz force
under chromospheric conditions (e.g., Goodman 2012), or
propagation of p-modes (e.g., de Wijn et al. 2009). Moreover,
type II spicules could be warps in 2D sheet-like structures (e.g.,
Judge et al. 2011). More recently, Sterling & Moore (2016)
suggest another mechanism in which solar spicules result from
the eruptions of small-scale chromospheric filaments.

The limited resolution in observations and the complexity
of the chromosphere make the interpretation of the structures
difficult, even calling into question the existence of type II
spicules as a particular class (e.g., Zhang et al. 2012). In
consequence, these difficulties spoil the potential importance
of magnetic reconnection as a transcendent mechanism in the
solar surface. Nevertheless, there is evidence that magnetic
reconnection is a good explanation for chromospheric
anemone jets (e.g., Singh et al. 2012), which are observed
to be much smaller and much more frequent than surges (e.g.,
Shibata et al. 2007). A statistical study performed by
Nishizuka et al. (2011) showed that the chromospheric
anemone jets have typical lengths of 1.0–4.0 Mm, widths of
100–400 km, and cusp sizes of 700–2000 km. Their lifetime is
about 100–500 s, and their velocity is about 5–20 km s−1.
Other types of coronal jets can be generated by magnetic
reconnection; for example, Yokoyama & Shibata
(1995, 1996) used 2D numerical simulations to study the jet
formation, and Nishizuka et al. (2008) showed that emerging
magnetic flux reconnects with an open ambient magnetic field
and that such reconnection produces the acceleration of
material and thus a jet structure. The reconnection seems to
trigger the jet formation in a horizontally magnetized
atmosphere, with the flux emergence as a mechanism (e.g.,
Archontis et al. 2005; Galsgaard et al. 2007).

Another approach uses a process that produces a magnetic
reconnection using numerical dissipation of the ideal MHD
equations, and the atmosphere model is limited to having
constant density and pressure profiles and assumes that there is
no gravity (e.g., Pariat et al. 2009, 2010, 2015; Rachmeler et al.
(2010). In our case we show that magnetic reconnection can be
responsible for the formation of jets with some characteristics
of type II spicules and cold coronal jets (e.g., Nishizuka et al.
2008), for that (i) we solve the system of equations of the
resistive MHD subject to the solar gravitational field, and (ii)
we assume a completely ionized solar atmosphere consistent
with the C7 model. The resulting magnetic reconnection
accelerates the plasma upward by itself and produces the jet.
The paper is organized as follows. In Section 2 we describe

the resistive MHD equations, the model of solar atmosphere,
the magnetic field configuration used in the numerical
simulations, and the numerical methods we use. In Section 3
we present the results of the numerical simulations for various
experiments. Section 4 contains final comments and
conclusions.

2. Model and Numerical Methods

2.1. The System of Resistive MHD Equations

The system of equations allowing the formation of magnetic
reconnection is the resistive MHD. In this paper we follow
Jiang et al. (2012) to write the dimensionless Extended
Generalized Lagrange Multiplier (EGLM) resistive MHD
equations that include gravity as follows:
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Table 1
Scaling Factors to Translate Physical into Code Units

Variable Quantity Unit Value

x, y, z Length L0 106 m
ρ Density r0 10−12 kg m−3

B Magnetic field B0 11.21 G
v Velocity m r=v B0 0 0 0 106 -m s 1

t Time =t L v0 0 0 1 s
η Resistivity h m= L v0 0 0 0 ´ - -1.25664 10 m s N A6 2 1 2

2
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where ρ is the mass density, v is the velocity vector field, B is
the magnetic vector field, E is the total energy density, where
g = 5 3, the plasma pressure p is described by the equation of
state of an ideal gas, g is the gravitational field, J is the current
density, η is the magnetic resistivity tensor, and ψ is a scalar
potential that helps damp out the violation of the constraint
 =B 0· . Here ch is the wave speed and cp is the damping
rate of the wave of the characteristic mode associated with ψ. In
this study we consider uniform and constant magnetic
resistivity, because the solar chromosphere is fully collisional
and anomalous or space-dependent resistivity—which is the
result of various collisionless processes—may not be expected
(e.g., Singh et al. 2011). We normalize the equations with the
quantities given in Table 1, which are typical scales in the solar
corona.

In the EGLM-MHD formulation, Equation (5) is the
magnetic field divergence free constraint. As suggested in
Dedner et al. (2002), the expressions for ch and cp are
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where Dt is the time step, Dx, Dy, and Dz are the spatial
resolutions, <c 1cfl is the Courant factor, and cd is a problem-
dependent coefficient between 0 and 1; this constant determines
the damping rate of divergence errors. The parameters ch and cp
are not independent of the grid resolution and the numerical
scheme used; for that reason one should adjust their values. In
our simulations we use =c c cp r h, with cr=0.18 and
ch=0.01. For our analysis we use a 2.5D model, which
means that all the state variables depend on x and z, where x is a
horizontal coordinate and z labels height, and a nonzero
component of the vector field vy and a nontrivial magnetic field
y-component By that vary with x and z are allowed (e.g.,
González-Avilés & Guzmán 2015; González-Avilés et al.
2015). In this work we solve the 2.5D version of the resistive
MHD equations on the xz plane with resolution Dx and Dz.

2.2. Numerical Methods

We solve numerically the resistive EGLM-MHD equations
given by the system of Equations (1)–(5) on a single uniform
cell centered grid, using the method of lines with a third-order
total variation diminishing Runge–Kutta time integrator (e.g.,
Shu & Osher 1989). In order to use the method of lines, the
right-hand sides of resistive MHD equations are discretized
using a finite volume approximation with high-resolution
shock-capturing methods (e.g., LeVeque 1992). For this, we
first reconstruct the variables at cell interfaces using the
Minmod limiter. Numerical fluxes are calculated using the
Harten–Lax–van Leer–Contact approximate Riemann solver
(e.g., Li 2005).

2.3. Model of the Solar Atmosphere

We choose the numerical domain to cover part of the
photosphere, chromosphere, and corona. We consider the
atmosphere in the hydrostatic equilibrium and study the
evolution on a finite xz domain. The temperature field is
assumed to obey the semiempirical C7 model of the chromo-
sphere-transition region (e.g., Avrett & Loeser 2008) and is
distributed to obtain the optimum agreement between calcu-
lated and observed continuum intensities, line intensities, and
line profiles of the SUMER (e.g., Curdt et al. 1999) atlas of the
extreme-ultraviolet (EUV) spectrum. The model includes the
photosphere as presented in Fontela et al. (1990) and is
extended to the solar corona, as is described by Griffiths et al.
(1999). The profiles of T(z) and r z( ) are shown in Figure 1,
where the expected gradients at the transition region can
be seen.

2.4. The Magnetic Field

The magnetic field in the model is chosen as a superposition
of two neighboring loops. The idea behind this type of
configuration is that the magnetic field of the two loops has a
different polarity in the region where they are close to each
other. This kind of configuration has been observed to trigger
solar flares, as reported in Takasao et al. (2012) and Su et al.
(2013), where through EUV and X-ray data the reconnection
was observed, as inflowing cool loops and outflowing hot

Figure 1. Temperature (red) and mass density (green) as a function of height
for the C7 equilibrium solar atmosphere model. Notice the steep jump in
temperature.

Figure 2. Top: two consecutive symmetric magnetic loop configurations with
the same field strength =B B01 02. Bottom: two consecutive nonsymmetric
magnetic loop configurations for the case >B B01 02. The length of each loop is
represented by L, and the location of footpoints is determined by the
parameter l0.
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loops. Inspired by this, we set a similar magnetic field topology
with a weaker strength. Following Priest (1982) and Del Zanna
et al. (2005), we construct a loop with the vector potential

= -A x z
B

k
kx kz, cos exp , 6y

01( ) ( ) ( ) ( )

where B01 is the photospheric field magnitude at the footpoints
= x L 2 and p=k L. Here L is the distance between the

two footpoints of the loop, and k defines the nodes of the
potential. In this model the components of the magnetic field
are represented as

= -B x z B kx kz, cos exp , 7x 01( ) ( ) ( ) ( )

= - -B x z B kx kz, sin exp . 8z 01( ) ( ) ( ) ( )

In order to superpose two loops, we use a modified version
of Equation (6):
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where l0 defines the location of the footpoints for each loop,
and B01 and B02 are the magnetic field strengths of the left and
right loop, respectively. With the parameter l0 it is possible to
control the separation between the two magnetic loops, which
in turn will influence the thickness of a current sheet. The case

=B B01 02 describes two neighboring loop configurations with
the same magnetic field strength, whereas ¹B B01 02 describes
two nearby loops with different magnetic field strengths. A
schematic picture of these two configurations is shown in
Figure 2.

3. Results of Numerical Simulations

The numerical integration with high-resolution shock-capturing
methods introduces a problem and resolution-dependent numer-
ical dissipation, which may account for important effects,
including magnetic reconnection. For instance, in Pariat et al.
(2009, 2010, 2015) numerical dissipation is used to emulate
resistivity. In our case we solve the resistive MHD equations to
account for the physical and not the numerical effect of resistivity.
We ran a number of simulations with the magnetic field
configuration given by Equation (9) in a scenario with constant

resistivity h = ´ -5 10 2 W m· across the whole domain, which
is a realistic value estimated for a fully ionized solar atmosphere
(e.g., Priest 2014). We verified that when the resistivity is set to
zero no jet formation was observed in all the cases. This indicates
that the magnetic reconnection is not due to the numerical
methods. We experimented with various values of the magnetic
field strength and separation of the loops, as indicated in Table 2.
We fixed p=k L with L=8Mm, and the simulations

were carried out in a domain Î -x 4, 4[ ], Îy 0, 1[ ],
Îz 0, 10[ ] in units of Mm, covered with 300×4×375 grid

cells. In all the numerical simulations we used outflow
boundary conditions, which in our approach translates into
 =f n 0( ) · ˆ , where f is any of our conservative variables and

n̂ is a unit normal vector to each of the faces of the domain
(e.g., Toro 2009). These boundary conditions are appropriate
for this problem because they behave as stationary as long as
no flux is approaching the boundaries, and as soon as any mode
reaches the boundaries, it is free to get off the domain.
We study the formation of structures considering various

scenarios. The magnetic field parameters of the simulations we
study in this paper are summarized in Table 2.

3.1. Symmetric Configurations

We show the results for the case =B B01 02 for three values of
magnetic strength: 20, 30, 40 G and =l 2.5, 3.0, 3.50 Mm.
Representative simulations for this case are shown in Figure 3 for
l0=3.5Mm. Run #1 corresponds to the typical formation of a
jet, with a special feature at the top with a bulb possibly related to
the formation of a Kelvin–Helmholtz (KH) type of instability.
This jet reaches a maximum height of 7.3Mm, which we denote
by hmax in this and the cases below. The speed of the jet
(evaluated at hmax) is »v 15.4z h, max km -s ;1 unlike other analyses
(e.g., Heggland et al. 2007), where the maximum speed refers to
the whole domain, we measure the speed at hmax in order to avoid
the possibility that the maximum speed happens at the base of the
jet instead of at the top. This maximum height is achieved at time

=t 210.2 shmax . After this time, the jet starts to fall down until it
disperses away by time »t 400 s. An animation of Run #1 is
presented in the online version of Figure 4. In the top of Figure 5
we show the temperature and velocity inside the jet, Tinside and
vz,inside, as a function of time, where the subscript “inside” means
that they are measured inside the head of the jet on the fly. We
show in Figure 3 the magnitude of the current density J∣ ∣, which
shows the formation of an elongated structure consistent with the

Table 2
Maximum Height, Vertical Velocity, Temperature, Density, and Time When the Jets Reach the Maximum Height for Each Magnetic Field Configuration

Run # B01 (G) B02 (G) l0 (Mm) hmax(Mm) vz h, max (km -s 1) T hinside, max (K) r hinside, max
(kg -m 3) t shmax ( )

1 40 40 3.5 7.3 15.4 14200 ´ -1.32 10 10 210.2
2 30 30 2.5 2.3 33.9 48452 ´ -2.5 10 10 70.4
3 30 30 3.5 3.9 13.4 22532 ´ -1.3 10 10 196.8
4 20 20 2.5 1.5 12.1 25933 ´ -1.2 10 10 94.4
5 20 20 3.0 1.8 3.7 47990 ´ -1.0 10 10 142.4
6 20 20 3.5 1.2 8.7 27334 ´ -1.4 10 10 160
7 40 30 3.5 7.2 16.8 34112 ´ -4.0 10 11 213.3
8 40 20 3.0 1.2 76.5 76467 ´ -1.0 10 9 11.2
9 40 20 3.5 6.7 31.0 110560 ´ -1.2 10 11 211.2
10 30 20 2.5 2.8 61.4 30565 ´ -6.4 10 10 52.8
11 30 20 3.0 2.7 11.0 31201 ´ -8.6 10 11 139.2
12 30 20 3.5 3.1 5.8 31931 ´ -5.8 10 11 204.8

Note.We include symmetric ( =B B01 02) and nonsymmetric ( ¹B B01 02) cases.
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reconnection process and has its maximum in a zone right below
the transition region in the three cases where beta b > 1.

In the middle panels of Figure 3 we show the results for
Run #3. Since the magnetic field is weak, the resulting jet
reaches a maximum height of 3.9 Mm with a vertical velocity

»v 13.4z h, max km -s 1 at time =t 196.8 s. Finally, in the
bottom panels of Figure 3, we show Run #6; in this case
the effect of an even weaker magnetic field is seen in the
appearance of a small jet that reaches a maximum height of
1.2 Mm with a speed »v 8.7z h, max km -s 1 at time t=160 s.

Figure 3. From left to right we show snapshots of (i) logarithm of the temperature in kelvin; (ii) the vertical component of the velocity (vz km -s 1), where the arrows
show the velocity field distribution; (iii) the magnitude of the current density J∣ ∣ (A -m 2); and (iv) the magnetic field configuration at the initial time, which helps us
notice the distortions of the field during the evolution. In the top panels we show the results for Run#1, where = =B B 4001 02 G at time =t 210.136 s. In the middle
panels we present the results for Run #3, where = =B B 3001 02 G at time =t 196.8 s. Finally, in the bottom panels we show the results for Run #6, where

= =B B 2001 02 G at time t=160 s. In all the cases l0=3.5 Mm.
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These results indicate that the height of the jet is larger for
higher values of =B B01 02, and the sharpness of the jet is also
clearer for strong magnetic fields.

The separation of the loops determines the formation of the
jets. In the case of configurations with a larger separation, the
plasma is accelerated rapidly, which produces diffusion, and
consequently the jet does not form. However, in the case of
closer loops, the plasma is accelerated slowly, which allows the
formation of a jet later on. According to our results, for the
parameters we analyzed, the most effective value of l0 to trigger
a jet is l0=3.5 Mm.

3.2. Nonsymmetric Configurations

In this case we show the results for a less idealized magnetic
field configuration where the magnetic field loops have
different strengths ( ¹B B01 02) for the combinations of
magnetic field strengths 20, 30, and 40 G and =l 2.5,0
3.0, 3.5 Mm. In order to illustrate the effect of the asymmetry
in the formation of jets, we show the results for Runs #7, #9,
and #12 in Figure 6. In the top panels we present the result for
Run #7, which shows the inclination of the jet toward the loop
with the weak magnetic field. Similar to the previous case, the
top part of the jet exhibits a bulb similar to a KH instability
(e.g., Kuridze et al. 2016). This jet reaches a maximum height
of 7.2 Mm and a vertical velocity »v 16.8z h, max km -s 1 at
=t 213.3 s. Like in the symmetric case, the jet starts to weaken

and finally vanishes, which can be seen in the bottom panels of
Figure 5 in the time domain. An animation of Run #7 is
presented in the online version of Figure 7. Also in Figure 5 we
show Tinside and vz,inside as a function of time estimated inside
the jet for Run #7. In the middle panels of Figure 6 we show
Run #9, and in this case the jet shows a more significant

inclination. The jet reaches a maximum height of 6.7 Mm and
vertical velocity »v 31z h, max km -s 1 at time =t 211.2 s. The
inclination is also shown in the magnitude of current density J∣ ∣.
In the bottom panels we show Run #12, where the jet is small,
due to the weaker magnetic field of the loops. The maximum
height of the jet is about 3.1 Mm, and its vertical velocity is

»v 5.8z h, max km -s 1 at =t 204.8 s.
The velocity vector field shows that the plasma moves

toward the loop with weaker magnetic field strength. One can
appreciate some geometrical resemblance on the magnitude of
the current density J∣ ∣ maps from the simulations, with the
intensity maps in Ca II Ha emission lines seen in the
observations with Hinode/SOT (see Figure 1 of Tavabi et al.
2015b). We do not show the density of the plasma in these
figures, because its shape is pretty much that of the temperature
profile.
We summarize the diagnostic results for all the combinations

of the magnetic field configurations in Table 2. These are the
maximum height hmax, the velocity of the plasma along the
vertical direction vz h, max , the plasma temperature Tinside
measured at hmax, density rinside also measured at maximum
height, and time when the jets reach the maximum height thmax .
In the case of nonsymmetric magnetic loops, the inclination

depends on the magnetic field strength between the two loops,
as shown in Figure 6. In order to see this dependence more
clearly, we show the inclination angle of the jet as a function of
the ratio B B02 01 for different separation parameters in Figure 8
at the time when the jet reaches the maximum height for
each case.
We were wondering whether the bulb appearing at the top of

the jet is due to a KH instability taking place during the
evolution of the jet. For this we monitor the condition

Figure 4. Online animation showing the evolution of the logarithm of the
temperature (colored heat map) in kelvin with the magnetic field lines (colored
in blue) for Run #1, where = =B B 4001 02 G and l0=3.5 Mm. The 15 s
video spans an approximately 400 s duration jet. In this animation we can see
that the jet appears at the transition region and starts to move straight upward
until reaching a maximum height at approximately t=210 s; after this time,
the jet starts to disperse and disappear at about t=400 s. The magnetic field
lines show a symmetric distortion due to the straight motion of the jet.

(An animation of this figure is available.)

Figure 5. Some properties of the jet using diagnostics of the temperature of the
jet Tinside and the vertical velocity vz,inside as a function of time. We estimate
these quantities every 10 s. Top: the case = =B B 4001 02 G and l0=3.5 Mm.
From the velocity data we can see that the jet starts to disperse at »t 200 s.
Bottom: the case =B 4001 , =B 3002 G, and l0=3.5 Mm; in this case the jet
starts to disperse away also at »t 200 s.
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(Chandrasekhar 1961; Cowling 1976)
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z z

0

2

2 2
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where -Bz
( ) and +Bz

( ) represent the vertical magnetic field outside
and inside the jet, respectively. Here r -( ) and r +( ) are the
corresponding values of the mass density, m0 is the magnetic

permeability, and -vz
( ) and +vz

( ) are the vertical components of the

Figure 6. From left to right we show snapshots of (i) logarithm of the temperature in kelvin; (ii) the vertical component of the velocity (vz km -s 1) in color with the
velocity vector field; (iii) the magnitude of the current density J∣ ∣ (A -m 2) at the time when the jet reaches the maximum height; and (iv) the magnetic field
configuration at initial time. In the top panels we show the results for Run #7, where = =B B40, 3001 02 G at time =t 213.3 s. In the middle panels we present the
results for Run #9, where = =B B40, 2001 02 G at time =t 211.2 s. Finally, in the bottom panels we show the results for Run #13, where = =B B30, 2001 02 G
at time =t 204.8 s. In all the cases l0=3.5 Mm.
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velocity. Condition (10) implies that if the magnetic field is
parallel to the jet, such a perturbation stretches the field lines and
produces a restoring force when the magnetic fields are strong
enough to suppress the instability if the condition given by
Equation (10) is satisfied.

We measure the quantities involved in Equation (10) in two
places and two different times in order to track any possible
violation of this condition. For this we choose Run #1 and
check whether or not Equation (10) is satisfied at times
=t 100 s1 , when the jet is still moving upward and possibly

causes a KH instability, and at =t 210 s2 , which is the time
near its maximum height, when the bulb is already formed. The
measurements are presented in Table 3. We found that at =t t1

the inequality is verified by nearly an order of magnitude,
whereas at =t t2, at the top of the bulb, when the jet is almost
at rest, the inequality is barely satisfied, which implies that the
KH instability tends to appear but is suppressed by the
magnetic field. Nevertheless, at the bottom of the jet the
inequality is nearly satisfied and we cannot see any feature of a
KH instability.
According to the parameters of Table 3 for both examples,

the condition given by Equation (10) is satisfied, which implies
that magnetic field should suppress the KH instability.

4. Conclusions

In this paper we present the numerical solution of the
equations of the resistive MHD submitted to the solar constant
gravitational field and simulate the formation of narrow jet
structures on the interface low chromosphere and corona. For
this we use a magnetic field configuration of two superposed
loops that allows the magnetic reconnection process, which in
turn accelerates the plasma. Our model is idealized in the sense
that it needs a region with mixed polarity nearby, even though
many type II spicules are observed in regions where the
magnetic field is predominantly unipolar.
An ingredient of our simulations is that we use an

atmospheric model that includes the transition region, and the
rarefied environment above the transition region helps the
acceleration of the plasma. We can summarize our findings in
the schematic picture shown in Figure 9. This rarefied
atmosphere allows the formation of a bulb at the top of the
jet, which would be interesting if it were due to a KH instability
(e.g., Kuridze et al. 2016), contained and stabilized by the
magnetic field as found in Flint et al. (2014) and Zaqarashvili
et al. (2014). However, we found that the conditions under the
approximate approach of Equation (10) are not sufficient for a
KH instability to hold, although it is only an idealized
approximation and there is still a chance that a KH process
happens.
We consider symmetric and asymmetric magnetic field

configurations. In the symmetric case, different jet properties
were found in terms of separation and the magnetic field
strength of the loops. The magnetic field used ranges from 20
to 40 G, leading to the conclusion that the stronger the
magnetic field, the higher the jet. The temperature within the jet
structure is of the order of 104 K in all the cases, which is
within the observed range of a cool jet (e.g., Nishizuka et al.
2008). An illustrative example is that of = =B B 4001 02 G and
l0=3.5 Mm, which shows a maximum height of 7.3 Mm
measured from the transition region and a vertical velocity of

»v 15.4z h, max km -s 1. Our simulations indicate that the jets may
last for about 200 s, which is slightly above the 50–150 s for
observed type II spicules (e.g., De Pontieu et al. 2007c),
whereas the velocity of our jets lies in the lower bound of the
observations.
In the case of asymmetric magnetic field configurations we

also simulated the formation of jets with similar properties of
temperature, velocity, lifetime, and height of the symmetric
configurations. The main feature is that jets show a consider-
able inclination toward the loop with the weaker magnetic field.
We found that the inclination of the jet depends on the
magnetic field ratio of the two loops.
According to the results of this paper, a good model for the

formation of jets mimicking some properties of cool coronal
jets (Nishizuka et al. 2008) and type II spicules is to have two

Figure 7. Online animation showing the evolution of the logarithm of the
temperature (colored heat map) in kelvin with the magnetic field lines (colored
in blue) for Run #7, where = =B B40, 3001 02 G and l0=3.5 Mm. The 15 s
video spans an approximately 400 s duration jet. In this animation we can see
that the jet appears at the transition region and starts to move upward with an
inclination with respect to the loop with weaker magnetic field strength. This
jet reaches a maximum height at approximately t=213 s; after this time, the
jet starts to disperse and disappear at about t=400 s, similar to the animation
of Run #1. In this case the magnetic field lines show a clear distortion due to
the evolution of the jet into a nonsymmetric magnetic field loop configuration.

(An animation of this figure is available.)

Figure 8. Inclination angle of the jet measured when it reaches the maximum
height as a function of the ratio B B02 01 for the cases of two nonsymmetric
magnetic loops with separations =l 3.5, 3.0, 2.50 Mm.
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magnetic loops close together with opposite polarity. This
produces magnetic reconnection, which accelerates the plasma.
A key ingredient in the process is the inclusion of magnetic
resistivity, which is a mechanism consistent with the magnetic
reconnection process.
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Figure 9. Two configurations of the magnetic coronal loops with footpoints at
the photospheric level. Initially two magnetic loops close together have
opposite polarity, which produces magnetic reconnection. In the case of two
symmetric magnetic loops (left) the jet appears at the middle of the
configuration and moves straight upward until it reaches the solar corona and
diffuses later on. In the case of two asymmetric loops (right) the jets are formed
and evolve at the middle of the configuration, but in this case the loop with the
stronger magnetic field pushes the jet toward the loop with the weak magnetic
field. In both cases there is an elongated structure represented by the density
current J in the perpendicular direction to the jet.

Table 3
Measured Parameters Related to Condition (10)

Case r +( ) (kg -m 3) r -( ) (kg -m 3) +vz
( ) (km -s 1) -vz

( ) (km -s 1) +Bz
( ) (T) -Bz

( ) (T) Time (s)

Example 1 (bottom of the jet) 2.27×10−9 2.96×10−10 7.54 1.35 5.6×10−4 1.94×10−3 100.3
Top of the jet 1.66×10−10 2.06×10−12 38.86 25.27 2.83×10−4 3.99×10−4 100.3
Example 2 (bottom of the jet) 1.057×10−9 3.57×10−11 −5.85 −7.07 4.39×10−4 1.33×10−3 210.2
Top of the jet 1.40×10−10 7.12×10−12 15.4 −4.60 −3.056×10−5 −2.7×10−4 210.2
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