144 research outputs found
Conformal symmetry in quasifree Markovian open quantum systems
Conformal symmetry governs the behavior of closed systems near second-order phase transitions and is expected to emerge in open systems going through dissipative phase transitions. We propose a framework allowing for a manifest description of conformal symmetry in open Markovian systems. The key difference from the closed case is that both conformal algebra and the algebra of local fields are realized on the space of superoperators. We illustrate the framework by a series of examples featuring systems with quadratic Hamiltonians and linear jump operators, where the Liouvillian dynamics can be efficiently analyzed using the formalism of third quantization. We expect that our framework can be extended to interacting systems using an appropriate generalization of the conformal bootstrap.</p
Transition Metal Trichalcogenides as Novel Layered Nano Species
In search for new materials for nanoelectronics, many efforts have been put into development of chem-istry and physics of graphene, and, more recently, of other inorganic layered compounds having a bandgap (h-BN, MoS2 etc.). Here we introduce a new view on the family of transition metal trichalcogenides MQ3 (M=Ti, Zr, Nb, Ta; Q=S, Se), which were earlier considered as quasi-one-dimensional systems, and demon-strate that they also may be regarded as layered species suitable for exfoliation by a chemical method. Stable, concentrated colloidal dispersions of high-quality crystalline NbS3 and NbSe3 nanoribbons down to mono- and few-layer-thick are prepared by ultrasonic treatment of the bulk compound in several common organic solvents (DMF, NMP, CH3CN, iPrOH, H2O/EtOH). The dispersions and thin films prepared from them by vacuum filtration or spraying are characterized by a set of physical-chemical methods. Current-voltage characteristics of the NbS3 films show that charge carrier mobility is as high as 1200 – 2400 cm2V-1s-1, exceeding that of MoS2 and making NbQ3 promising potential candidates for field-effect transistors.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3522
Discrete Nonholonomic Lagrangian Systems on Lie Groupoids
This paper studies the construction of geometric integrators for nonholonomic
systems. We derive the nonholonomic discrete Euler-Lagrange equations in a
setting which permits to deduce geometric integrators for continuous
nonholonomic systems (reduced or not). The formalism is given in terms of Lie
groupoids, specifying a discrete Lagrangian and a constraint submanifold on it.
Additionally, it is necessary to fix a vector subbundle of the Lie algebroid
associated to the Lie groupoid. We also discuss the existence of nonholonomic
evolution operators in terms of the discrete nonholonomic Legendre
transformations and in terms of adequate decompositions of the prolongation of
the Lie groupoid. The characterization of the reversibility of the evolution
operator and the discrete nonholonomic momentum equation are also considered.
Finally, we illustrate with several classical examples the wide range of
application of the theory (the discrete nonholonomic constrained particle, the
Suslov system, the Chaplygin sleigh, the Veselova system, the rolling ball on a
rotating table and the two wheeled planar mobile robot).Comment: 45 page
Cyclotomic Gaudin models: construction and Bethe ansatz
This is a pre-copyedited author produced PDF of an article accepted for publication in Communications in Mathematical Physics, Benoit, V and Young, C, 'Cyclotomic Gaudin models: construction and Bethe ansatz', Commun. Math. Phys. (2016) 343:971, first published on line March 24, 2016. The final publication is available at Springer via http://dx.doi.org/10.1007/s00220-016-2601-3 © Springer-Verlag Berlin Heidelberg 2016To any simple Lie algebra and automorphism we associate a cyclotomic Gaudin algebra. This is a large commutative subalgebra of generated by a hierarchy of cyclotomic Gaudin Hamiltonians. It reduces to the Gaudin algebra in the special case . We go on to construct joint eigenvectors and their eigenvalues for this hierarchy of cyclotomic Gaudin Hamiltonians, in the case of a spin chain consisting of a tensor product of Verma modules. To do so we generalize an approach to the Bethe ansatz due to Feigin, Frenkel and Reshetikhin involving vertex algebras and the Wakimoto construction. As part of this construction, we make use of a theorem concerning cyclotomic coinvariants, which we prove in a companion paper. As a byproduct, we obtain a cyclotomic generalization of the Schechtman-Varchenko formula for the weight function.Peer reviewe
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Formation of proliferation-resistant nuclear fuel supplies based on reprocessed uranium for Russian nuclear technologies recipient countries
The paper presents different strategies for the conversion of VVER-1000 reactors to reprocessed uranium fuel for estimating the time required to form a proliferation-resistant VVER-1000 fuel load based on uranium extracted from spent fuel of reactors of the same type cleared of minor actinides and fission products. It has been shown that the change in the proliferation resistance status of generated plutonium in the VVER-1000 spent nuclear fuel is achieved by denaturation of plutonium through the increase in the concentration of 238Pu plutonium isotope in irradiated fuel. The initial presence of 236U uranium isotope in fresh uranium fuel of the VVER-1000 reactor has been shown to have an effect on the accumulation of 238Pu, a key isotope in the context of the barrier against unauthorized proliferation. Saving of uranium resources has been additionally analyzed for the considered strategies to convert VVER-1000 reactors to reprocessed uranium fuel for the purpose of improving the resource base of NPPs in Russia and recipient countries
- …