5,833 research outputs found

    Two-color interference stabilization of atoms

    Full text link
    The effect of interference stabilization is shown to exist in a system of two atomic levels coupled by a strong two-color laser field, the two frequencies of which are close to a two-photon Raman-type resonance between the chosen levels, with open channels of one-photon ionization from both of them. We suggest an experiment, in which a rather significant (up to 90%) suppression of ionization can take place and which demonstrates explicitly the interference origin of stabilization. Specific calculations are made for H and He atoms and optimal parameters of a two-color field are found. The physics of the effect and its relation with such well-known phenomena as LICS and population trapping in a three-level system are discussed.Comment: the paper includes 1 TeX file and 16 picture

    Gaussian modeling and Schmidt modes of SPDS biphoton states

    Full text link
    A double-Gaussian model and the Schmidt modes are found for the biphoton wave function characterizing spontaneous parametric down-conversion with the degenerate collinear phase-matching of the type I and with a pulsed pump. The obtained results are valid for all durations of the pump pulses, short, long and intermediately long

    Measurement of the neutron electric dipole moment by crystal diffraction

    Full text link
    An experiment using a prototype setup to search for the neutron electric dipole moment by measuring spin-rotation in a non-centrosymmetric crystal (quartz) was carried out to investigate statistical sensitivity and systematic effects of the method. It has been demonstrated that the concept of the method works. The preliminary result of the experiment is dn=(2.5±6.5)⋅10−24d_{\rm n}=(2.5\pm 6.5)\cdot 10^{-24} e⋅\cdot cm. The experiment showed that an accuracy of ∼2.5⋅10−26\sim 2.5\cdot 10^{-26} e⋅\cdot cm can be obtained in 100 days data taking, using available quartz crystals and neutron beams.Comment: 13 pages, 4 figure

    The Development of New Casting Alloys Intended for Operation Under Extreme Conditions and Some Techniques of Making Castings From Them

    Full text link
    The article studies new heat-resistant and wear resistant materials for operation under extreme conditions, especially in the power industry. The methods that improve the quality of a metal in metal castings through the influence of alloying elements on its structure and properties have been considered. These methods are very effective for reducing the tendency of a metal to form a coarse–grained structure. The paper describes optimal techniques for melting special alloys in induction and electric furnaces. A set of rules for the selection of a melting temperature before pouring a metal into the casting forms depending on the dimensions, wall thickness, geometry of castings have been determined. The behavior of new alloys under the conditions of high temperatures, aggressive environments has been studied.It has been established that heat–resistant Cr–Al steels exhibit high heat resistance and wear resistance properties; they 6–8 times surpass Cr–Ni steels in oxidation resistance. The proposed Cr–Mn cast iron processed in an integrated manner with REM (rare earth metals) and Ti is superior to a basic cast iron in conditions of a heavy wear. Numerous industrial trials confirm the usefulness of recommended new casting materials for use under extreme conditions
    • …
    corecore