80 research outputs found

    Microfluidics for the detection of minimal residual disease in acute myeloid leukemia patients using circulating leukemic cells selected from blood

    Get PDF
    Microfluidic assay for the selection of circulating leukemic cells from peripheral blood for the early detection of minimal residual disease in acute myeloid leukemia patients

    Mass Spectrometry Imaging Reveals Heterogeneous Efavirenz Distribution within Putative HIV Reservoirs

    Get PDF
    ABSTRACT Persistent HIV replication within active viral reservoirs may be caused by inadequate antiretroviral penetration. Here, we used mass spectrometry imaging with infrared matrix-assisted laser desorption–electrospray ionization to quantify the distribution of efavirenz within tissues from a macaque dosed orally to a steady state. Intratissue efavirenz distribution was heterogeneous, with the drug concentrating in the lamina propria of the colon, the primary follicles of lymph nodes, and the brain gray matter. These are the first imaging data of an antiretroviral drug in active viral reservoirs

    Models for Predicting Effective HIV Chemoprevention in Women

    Get PDF
    Model systems which rapidly identify tissue drug concentrations protective of HIV infection could streamline the development of chemoprevention strategies. Tissue models are promising, but limited concentration targets exist, and no systematic comparison to cell models or clinical studies has been performed

    Nucleolar Association and Transcriptional Inhibition through 5S rDNA in Mammals

    Get PDF
    Changes in the spatial positioning of genes within the mammalian nucleus have been associated with transcriptional differences and thus have been hypothesized as a mode of regulation. In particular, the localization of genes to the nuclear and nucleolar peripheries is associated with transcriptional repression. However, the mechanistic basis, including the pertinent cis- elements, for such associations remains largely unknown. Here, we provide evidence that demonstrates a 119 bp 5S rDNA can influence nucleolar association in mammals. We found that integration of transgenes with 5S rDNA significantly increases the association of the host region with the nucleolus, and their degree of association correlates strongly with repression of a linked reporter gene. We further show that this mechanism may be functional in endogenous contexts: pseudogenes derived from 5S rDNA show biased conservation of their internal transcription factor binding sites and, in some cases, are frequently associated with the nucleolus. These results demonstrate that 5S rDNA sequence can significantly contribute to the positioning of a locus and suggest a novel, endogenous mechanism for nuclear organization in mammals

    Comparison of baseline lymphoma and HIV characteristics in Malawi before and after implementation of universal antiretroviral therapy

    Get PDF
    Access to antiretroviral therapy (ART) led to epidemiological changes in human immunodeficiency virus (HIV) associated lymphoma in high-income countries such as reductions in diffuse large B-cell lymphoma (DLBCL) and stable or increased Hodgkin lymphoma (HL) and Burkitt lymphoma (BL). In 2016, Malawi implemented a universal ART (UART) policy, expanding ART eligibility to all persons living with HIV (PLWH). We compare the distribution of lymphoma subtypes and baseline HIV and prognostic characteristics for lymphoma patients in Malawi before and after implementation of UART. We enrolled patients with pathologically confirmed incident lymphoproliferative disorders into a observational clinical cohort. At diagnosis, a comprehensive clinicopathological evaluation was performed. Of 412 participants, 156 (38%) were pre-UART (2013-June 2016) and 256 (62%) post-UART (July 2016-2020). HIV prevalence was 50% in both groups. The most common pre-UART diagnoses were DLBCL [75 (48%)], low-grade non-Hodgkin lymphoma (NHL) [19 (12%)], HL [17 (11%)] and, BL [13 (8%)]. For post-UART they were DLBCL [111 (43%)], NHL [28 (11%)], BL [27 11%)] and, HL [20 (8%)]. Among PLWH, 44 (57%) pre-UART initiated ART prior to lymphoma diagnosis compared to 99 (78%) post-UART (p = 0.02). HIV-ribonucleic acid was suppressed <1000 copies/mL in 56% (33/59) pre-UART and 71% (73/103) post-UART (p = 0.05). CD4 T-cell counts were similar for both groups. We observed similar findings in the subset of participants with DLBCL. Overall, there were no significant changes in incident lymphoma subtypes (p = 0.61) after implementation of UART, but HIV was better controlled. Emerging trends bear monitoring and may have implications for prognosis and health system priority setting

    Sequences Sufficient for Programming Imprinted Germline DNA Methylation Defined

    Get PDF
    Epigenetic marks are fundamental to normal development, but little is known about signals that dictate their placement. Insights have been provided by studies of imprinted loci in mammals, where monoallelic expression is epigenetically controlled. Imprinted expression is regulated by DNA methylation programmed during gametogenesis in a sex-specific manner and maintained after fertilization. At Rasgrf1 in mouse, paternal-specific DNA methylation on a differential methylation domain (DMD) requires downstream tandem repeats. The DMD and repeats constitute a binary switch regulating paternal-specific expression. Here, we define sequences sufficient for imprinted methylation using two transgenic mouse lines: One carries the entire Rasgrf1 cluster (RC); the second carries only the DMD and repeats (DR) from Rasgrf1. The RC transgene recapitulated all aspects of imprinting seen at the endogenous locus. DR underwent proper DNA methylation establishment in sperm and erasure in oocytes, indicating the DMD and repeats are sufficient to program imprinted DNA methylation in germlines. Both transgenes produce a DMD-spanning pit-RNA, previously shown to be necessary for imprinted DNA methylation at the endogenous locus. We show that when pit-RNA expression is controlled by the repeats, it regulates DNA methylation in cis only and not in trans. Interestingly, pedigree history dictated whether established DR methylation patterns were maintained after fertilization. When DR was paternally transmitted followed by maternal transmission, the unmethylated state that was properly established in the female germlines could not be maintained. This provides a model for transgenerational epigenetic inheritance in mice

    Gene Profiling of Canine B-Cell Lymphoma Reveals Germinal Center and Postgerminal Center Subtypes with Different Survival Times, Modeling Human DLBCL

    Get PDF
    Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma subtype, and fewer than half of patients are cured with standard front-line therapy. To improve therapeutic options, better animal models that accurately mimic human DLBCL (hDLBCL) are needed. Canine DLBCL (cDLBCL), one of the most common cancers in veterinary oncology, is morphologically similar to hDLBCL and is treated using similar chemotherapeutic protocols. With genomic technologies, it is now possible to molecularly evaluate dogs as a potential large-animal model for hDLBCL. We evaluated canine B-cell lymphomas (cBCLs) using immunohistochemistry and gene expression profiling. Canine B-cell lymphoma expression profiles were similar in many ways to hDLBCLs. For instance, a subset had increased expression of NF-κB pathway genes, mirroring human activated B-cell (ABC)-type DLBCL. Furthermore, immunoglobulin heavy chain (IGH) ongoing mutation status, which is correlated with ABC/germinal center B-cell (GCB) cell of origin in hDLBCL, separated cBCL into two groups with statistically different progression-free and overall survival times. In contrast with hDLBCL, cBCL rarely expressed BCL6 and MUM1/IRF4 by immunohistochemistry. Collectively, these studies identify molecular similarities to hDLBCL that introduce pet dogs as a representative model of hDLBCL for future studies, including therapeutic clinical trials

    Shortcomings of short hairpin RNA-based transgenic RNA interference in mouse oocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA interference (RNAi) is a powerful approach to study a gene function. Transgenic RNAi is an adaptation of this approach where suppression of a specific gene is achieved by expression of an RNA hairpin from a transgene. In somatic cells, where a long double-stranded RNA (dsRNA) longer than 30 base-pairs can induce a sequence-independent interferon response, short hairpin RNA (shRNA) expression is used to induce RNAi. In contrast, transgenic RNAi in the oocyte routinely employs a long RNA hairpin. Transgenic RNAi based on long hairpin RNA, although robust and successful, is restricted to a few cell types, where long double-stranded RNA does not induce sequence-independent responses. Transgenic RNAi in mouse oocytes based on a shRNA offers several potential advantages, including simple cloning of the transgenic vector and an ability to use the same targeting construct in any cell type.</p> <p>Results</p> <p>Here we report our experience with shRNA-based transgenic RNAi in mouse oocytes. Despite optimal starting conditions for this experiment, we experienced several setbacks, which outweigh potential benefits of the shRNA system. First, obtaining an efficient shRNA is potentially a time-consuming and expensive task. Second, we observed that our transgene, which was based on a common commercial vector, was readily silenced in transgenic animals.</p> <p>Conclusions</p> <p>We conclude that, the long RNA hairpin-based RNAi is more reliable and cost-effective and we recommend it as a method-of-choice when a gene is studied selectively in the oocyte.</p

    The Structural Complexity of the Human BORIS Gene in Gametogenesis and Cancer

    Get PDF
    BORIS/CTCFL is a paralogue of CTCF, the major epigenetic regulator of vertebrate genomes. BORIS is normally expressed only in germ cells but is aberrantly activated in numerous cancers. While recent studies demonstrated that BORIS is a transcriptional activator of testis-specific genes, little is generally known about its biological and molecular functions.Here we show that BORIS is expressed as 23 isoforms in germline and cancer cells. The isoforms are comprised of alternative N- and C-termini combined with varying numbers of zinc fingers (ZF) in the DNA binding domain. The patterns of BORIS isoform expression are distinct in germ and cancer cells. Isoform expression is activated by downregulation of CTCF, upregulated by reduction in CpG methylation caused by inactivation of DNMT1 or DNMT3b, and repressed by activation of p53. Studies of ectopically expressed isoforms showed that all are translated and localized to the nucleus. Using the testis-specific cerebroside sulfotransferase (CST) promoter and the IGF2/H19 imprinting control region (ICR), it was shown that binding of BORIS isoforms to DNA targets in vitro is methylation-sensitive and depends on the number and specific composition of ZF. The ability to bind target DNA and the presence of a specific long amino terminus (N258) in different isoforms are necessary and sufficient to activate CST transcription. Comparative sequence analyses revealed an evolutionary burst in mammals with strong conservation of BORIS isoproteins among primates.The extensive repertoire of spliced BORIS variants in humans that confer distinct DNA binding and transcriptional activation properties, and their differential patterns of expression among germ cells and neoplastic cells suggest that the gene is involved in a range of functionally important aspects of both normal gametogenesis and cancer development. In addition, a burst in isoform diversification may be evolutionarily tied to unique aspects of primate speciation

    Antagonism between DNA and H3K27 Methylation at the Imprinted Rasgrf1 Locus

    Get PDF
    At the imprinted Rasgrf1 locus in mouse, a cis-acting sequence controls DNA methylation at a differentially methylated domain (DMD). While characterizing epigenetic marks over the DMD, we observed that DNA and H3K27 trimethylation are mutually exclusive, with DNA and H3K27 methylation limited to the paternal and maternal sequences, respectively. The mutual exclusion arises because one mark prevents placement of the other. We demonstrated this in five ways: using 5-azacytidine treatments and mutations at the endogenous locus that disrupt DNA methylation; using a transgenic model in which the maternal DMD inappropriately acquired DNA methylation; and by analyzing materials from cells and embryos lacking SUZ12 and YY1. SUZ12 is part of the PRC2 complex, which is needed for placing H3K27me3, and YY1 recruits PRC2 to sites of action. Results from each experimental system consistently demonstrated antagonism between H3K27me3 and DNA methylation. When DNA methylation was lost, H3K27me3 encroached into sites where it had not been before; inappropriate acquisition of DNA methylation excluded normal placement of H3K27me3, and loss of factors needed for H3K27 methylation enabled DNA methylation to appear where it had been excluded. These data reveal the previously unknown antagonism between H3K27 and DNA methylation and identify a means by which epigenetic states may change during disease and development
    • …
    corecore