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Abstract

We report a highly sensitive microfluidic assay to detect minimal residual disease (MRD) in 

patients with acute myeloid leukemia (AML) that samples peripheral blood to search for 

circulating leukemic cells (CLCs). Antibodies immobilized within three separate microfluidic 

devices affinity-selected CLC subpopulations directly from peripheral blood without requiring 

pre-processing. The microfluidic devices targeted CD33, CD34, and CD117 cell surface antigens 

commonly expressed by AML leukemic cells so that each subpopulation’s CLC numbers could be 

tracked to determine the onset of relapse. Staining against aberrant markers (e.g. CD7, CD56) 

identified low levels (11-2684/mL) of CLCs. The commonly used platforms for the detection of 

MRD for AML patients are multi-parameter flow cytometry (MFC), typically from highly 

invasive bone marrow biopsies, or PCR from blood samples, which is limited to <50% of AML 

patients. In contrast, the microfluidic assay is a highly sensitive blood test that permits frequent 

sampling for >90% of all AML patients using the markers selected for this study (selection 

markers CD33, CD34, CD117 and aberrant markers CD7 and CD56). We present data from AML 

patients after stem cell transplant (SCT) therapy using our assay. We observed high agreement of 

the microfluidic assay with therapeutic treatment and overall outcome. We could detect MRD at 

an earlier stage compared to both MFC and PCR directly from peripheral blood, obviating the 

need for a painful bone marrow biopsy. Using the microfluidic assay, we detected MRD 28 days 

following SCT and the onset of relapse at day 57, while PCR from a bone marrow biopsy did not 

detect MRD until day 85 for the same patient. Earlier detection of MRD in AML post-SCT 

enabled by peripheral blood sampling using the microfluidic assay we report herein can influence 

curative clinical decisions for AML patients.
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Introduction

Leukemia is triggered by hematopoietic progenitor cells in the bone marrow that become 

mutated and clonally expand into leukemic blasts that do not fully differentiate into 

normally functioning blood cells.1 Leukemia can be divided into four major types by: (i) the 

rate of disease progression, acute (rapid, within weeks to months) or chronic (slow, within 

months to years); and (ii) the type of malignant cells, either originating from the lymphoid 

or myeloid lineage. Acute myeloid leukemia (AML) is the most common adult leukemia 

with ~20,000 new cases expected in 2015 with a 5-year survival rate of only 25%.2 The 

primary cause of death for AML patients is due to disease relapse.1

Patients diagnosed with AML are treated with chemotherapy if they are considered fit 

enough for treatment with the goal of inducing complete remission, defined as a normal 

appearing bone marrow biopsy (<5% leukemic cells) and normal circulating blood counts. 

However, even when the patient is in complete remission, low levels of leukemic cells 

persist that are likely to have chemotherapy-resistance and stem cell properties. This 

minimal residual disease (MRD) can re-initiate AML within weeks to months.1, 3 The 

consequences are significant: Of 1,108 patients in complete remission after therapy, 60% 

relapsed of which only 11% survived after 5 years.4 If clinicians can pinpoint when a 

patient’s MRD begins towards the rapid expansion to relapse, preemptive therapies can be 

taken with better patient outcome. Unfortunately, the classification of AML patients by risk 

according to age, white blood cell count, therapy response, and cytogenetic and genotypic 

abnormalities, if any,4–9 falls short of the ability to properly monitor MRD in individual 

patients. If MRD could be detected with high sensitivity at an early stage, the corresponding 

assay could assist in guiding therapy to enable precision medicine resulting in better patient 

outcome.5

A potentially curative therapy for AML is hematopoietic stem cell transplant (SCT), where a 

donor’s hematopoietic stem cells, either in the peripheral blood or purified bone marrow, are 

introduced into the patient. The donor’s graft transplanted into the recipient’s bone marrow 

undergoes normal hematopoiesis and induces a donor-derived, T cell-mediated, anti-

leukemia immunity, commonly called the graft-versus-leukemia effect. These transplants are 

typically reserved for patients at high risk of disease relapse, because while SCT lowers 

relapse risk, it is associated with a high treatment mortality (~25%).10, 11 Intense 

chemotherapy is needed to minimize AML relapse prior to grafting. In addition, T cell 

suppression is necessary to reduce graft rejection and graft-versus-host disease. These 
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treatments are physically taxing and leave the patient susceptible to a host of foreign and 

dormant infections, leading to SCT’s high rate of morbidity.

If relapse occurs after SCT, there are interventions that can be curative. A rapid withdrawal 

of immunosuppression and the infusion of donor lymphocytes can instigate an acute graft-

versus-leukemia response that can result in sustained long term remission.9, 12 However, the 

success of a donor lymphocyte infusion is intrinsically dependent upon the level of residual 

leukemia at the time of treatment. Donor lymphocyte infusion was only successful (overall 

survival >2 years) for 15% of patients with active AML, but the treatment was successful in 

55% of patients when administered while in remission.9 Thus, the ability to detect low but 

rising levels of MRD that signal the start of relapse is not only prognostically important, but 

can enable clinicians to implement therapy earlier that can improve patient outcome.3

An ideal MRD assay would be sensitive to low MRD levels and suitable for frequent 

analysis. This goal has been hindered by two issues: (i) Unlike other leukemias, AML’s 

inter-patient heterogeneity is immense; there is no characteristic genetic mutation or aberrant 

protein expression pattern for all AML patients,3 thus complicating the broad applicability 

of PCR, fluorescence in-situ hybridization (FISH) or multi-parameter flow cytometry (MFC) 

to test for MRD. (ii) AML relapse is rapid; it was calculated that long-term 42 day sampling 

intervals would be a minimum frequency to predict 75% of relapses.13

Assessing MRD from leukemic cells that circulate in a patient’s peripheral blood 

(circulating leukemic cells – CLCs) is a viable option for achieving sensitive MRD detection 

that can be done on a frequent basis due to the minimally invasive nature of the test.3 While 

PCR-based MRD assays offer favorable analytical detection limits,14 ranging from 1 CLC in 

104 – 106 normal blood cells, PCR assays are applicable to <50% of all AML patients due to 

AML’s genetic heterogeneity.15, 16

MFC is an approach that identifies aberrant expression of surface proteins (leukemia 

associated phenotypes), on mutated myeloid cells, which are present on almost all (>90%) 

AML cells.1, 3, 16 Two general leukemic associated phenotype patterns are: (i) Immature, 

myeloid cells (common normal myeloid markers are CD33, CD34, and CD117) with lineage 

infidelity (abnormal co-expression of a myeloid and lymphoid marker, such as CD7); or (ii) 

asynchronous antigen expression (abnormal co-expression of an immature and mature 

myeloid marker, such as CD56).5 Two main limitations exist regarding MFC MRD analysis: 

(i) The assay requires flow cytometers with >5 colors and highly skilled operators to 

correctly identify a cluster of 20 CLCs amongst 200,000 total bone marrow cells,5 although 

this detection limit varies between operators (bone marrow sensitivity ranges from 10−3 – 

10−4).17 (ii) MFC is noise-limited for rare event analysis18, 19 and is significantly affected 

by peripheral blood cells;5 hence bone marrow is generally required unless disease burden is 

very high. For example, MFC MRD analysis of peripheral blood yielded a log reduction in 

sensitivity compared to a bone marrow biopsy sample3 with a considerable number of false 

negatives below 1% MRD.20 Thus, MFC is only moderately sensitive and requires highly 

invasive bone marrow biopsies that limit test frequency due to the patient’s physical burden.
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Microfluidics has demonstrated success for the detection of epithelial solid cancers by 

isolating and interrogating circulating tumor cells (CTCs) that are extremely rare in blood 

(1–3,000 CTCs per 109 normal blood cells).21 In particular, we have reported the use of a 

sinusoidal microfluidic device to isolate CTCs in pancreatic,22–24 ovarian, colorectal, breast, 

and prostate cancer.24 The sinusoidal microfluidic technology has demonstrated purities 

>90%,22–24 recoveries ~97% for a model MCF-7 cell line25 and 80–100% clinical 

sensitivity for epithelial cancers when analyzing CTCs.24

The sinusoidal microfluidic device works on the principle of positive affinity selection, 

where monoclonal antibodies (mAbs) are bound to a microfluidic device’s surfaces and 

specifically select target antigen-bearing cells (Figure 1B,C). In operation, these devices 

require no sample pre-processing. Peripheral blood is hydrodynamically infused into the 

device that contains ≥50 parallel microchannels,22, 26 each possessing a 25 μm width and a 

sinusoidal architecture (Figures 1A,B) that promote extensive cell interactions with mAbs 

covalently tethered to the microfluidic surfaces (Figure 1B).23, 27 Antigen-expressing cells 

are retained by the mAb-coated surfaces while all other blood components are removed from 

the device by high fluidic shear that disrupts weak, non-specific interactions (Figure 

1C).23, 27, 28 These fluidic shear forces are unique to this microfluidic device, are an order of 

magnitude higher than in comparable microfluidic technologies,2223 and are not present in 

traditional magnetic bead isolation assays, which generally present low purities (0.01–0.1% 

for the CellSearch™ CTC selection platform)21 that complicate immunophenotyping and/or 

molecular analysis.27, 28 The sinusoidal microfluidic technology has achieved the highest 

purities to date for rare cell isolation.2223, 24 Because of the high purity provided by the 

device, after isolation the cells can be immunostained and imaged22, 23, 28 or lysed to 

analyze mRNA expression,29 gDNA mutations,28 or membrane proteins,26 without the 

deleterious effects of high levels of impurity cells into the assay.

Herein, we present an unique assay format and pilot clinical study where AML patients 

recovering from SCT were longitudinally tracked by isolating CD33, CD34, and CD117 

expressing CLCs using three sinusoidal microfluidic devices arranged in a parallel 

configuration in which one blood sample was fluidically split into the three separate 

microfluidic devices (see Figure 1A), co-staining against a patient-specific aberrant antigen 

and immunophenotyping the cells by semi-automated fluorescence microscopy. As a 

minimally invasive blood sample (3 mL) was required, patients could be sampled frequently 

compared to a bone marrow biopsy to detect earlier the onset of relapse. We compared the 

results from the microfluidic assay to conventional MRD monitoring, which consisted of 

microscopy, MFC, PCR analysis of bone marrow biopsy samples and in cases where the 

disease burden was high, peripheral blood. MRD tracking by microfluidic CLC surveillance 

matched well with both therapeutic treatment and patient outcome, but could detect the 

onset of relapse much earlier compared to PCR and/or MFC.

Experimental methods

Reagents and materials

Microfluidic devices were fabricated using 6013S-04 cyclic olefin copolymer (TOPAS 

Advanced Polymers), capillary tubing (365 μm OD, 150 μm ID, Polymicro Technologies), 
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reagent-grade isopropyl alcohol and Micro-90® (Sigma-Aldrich). Capillary connectors used 

Inner-Lok™ union capillary connectors (Polymicro Technologies) and barbed socket Luer 

Lock™ fittings (3/32″ ID, McMaster-Carr). mAb immobilization reagents included: 1-

ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC), N-

hydroxysuccinimide (NHS), 2-(4-morpholino)-ethane sulfonic acid (MES) buffer (pH 4.8), 

phosphate buffered saline (PBS, pH 7.4), and bovine serum albumin (BSA, 7.5%) in PBS 

(Sigma-Aldrich); sodium carbonate anhydrous (EMD Millipore); sodium hydroxide (Fisher 

Scientific); nuclease-free water (BioExpress); DL-1,4-dithithreitol (DTT, molecular biology 

grade, Acros Organics); sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-

carboxylate (sulfo-SMCC), Zeba spin desalting columns (7K MWCO), and a protein 

stabilizing cocktail (Thermo Scientific); and HPLC-purified, single-stranded, 

oligonucleotide linkers with 5′-amino and 3′-disulfide modifications with an internal dU 

residue (5′-NH2-C12-T8CCC TTC CTC ACT TCC CTT T-U-T9-C3-SS-C3OH, Integrated 

DNA Technologies). Other reagents included formaldehyde (Fisher Scientific), Triton-X100 

(Sigma-Aldrich), 4′,6-diamidino-2-phenylindole (DAPI, eBioscience), and Uracil Specific 

Excision Reagent (USER™, New England Biosciences). Nuclease-free microfuge tubes 

(BioExpress) and centrifuge tubes (Corning) were used for preparation and storage of all 

samples and reagents.

All mAbs used in this study were mouse anti-human. For cell isolation, anti-CD33 (clone 

WM53), anti-CD34 (clone 561, class III epitope), and anti-CD117 (c-kit, clone 104D2) 

mAbs (Biolegend) were used. Direct immunostaining mAbs were anti-CD45-

AlexaFluor®647 (clone HI30), anti-CD7-FITC (clone CD7-6B7), anti-CD38-

AlexaFluor®488 (clone HIT2), and anti-CD56-AlexaFluor®488 (NCAM, clone HCD56) 

from Biolegend. Indirect immunostaining mAbs were anti-CD7-biotin (clone MG34) and 

anti-CD33-biotin (clone HIM3-4) from Thermo Scientific and anti-CD34-biotin (clone 581, 

class III epitope), anti-CD56-biotin (NCAM, clone HCD56), and anti-CD117-biotin (c-kit, 

clone 104D2) from Biolegend. All biotinylated mAbs were counter-stained with 

streptavidin-DyLight®550 (Thermo Scientific). Fluorescent calibration beads, 

CELLQUANT Calibrator kit, were purchased from BioCytex and were prepared according 

to the manufacturer.

Cell selection device fabrication

Hot embossing was used to fabricate the microfluidic device in cyclic olefin copolymer as 

described previously.30, 31 Briefly, mold masters were prepared using high precision-

micromilling (KERN 44, KERN Micro- und Feinwerktechnik GmbH & Co.KG) and carbide 

bits (Performance Micro Tool).30 Hot embossing was performed using a HEX03 machine 

(Jenoptik Optical Systems GmbH) at 155°C and 30 kN force for 120 s. Embossed devices 

were diced, cleaned with 10% Micro-90®, IPA and DI water, assembled with capillary 

tubing and coverslip, clamped between glass plates, and thermal fusion bonded at 130°C for 

60 min. All protocols for activating the devices with cleavable oligonucleotide linkers and 

the cell selection mAbs were performed as previously described (SI).23, 24, 28
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Processing clinical samples

AML patients being prepared for allogeneic SCT were recruited according to a clinical 

protocol approved by the University of North Carolina’s Institutional Review Board (IRB). 

All patient treatments and conventional MRD test results were kept blinded until conclusion 

of the study. Blood specimens were collected into BD Vacutainer® EDTA tubes and 

remained on a nutator until processing (<4 h). Assembled microfluidic devices were 

thoroughly washed with >1 mL 0.5% BSA/PBS buffer (50 μL/min) to remove unbound 

mAb and passivate microchannel surfaces. Blood was transferred into disposable Luer 

Lock™ syringes (BD Biosciences) using a BD vacutainer female Luer transfer adapter. 

Filled syringes were connected to the devices via capillary connectors and processed 

through the microfluidic devices at 25 μL/min (2 mm/s).23, 25 Immediately thereafter, 

devices were rinsed with >1 mL 0.5% BSA/PBS (50 μL/min, 4 mm/s) to remove any 

nonspecifically bound cells.

Immunostaining, cell release, and imaging

After blood processing and rinsing, isolated cells were incubated at 4°C for 30 min with a 

cocktail of anti-CD45-Cy5 mAb and mAbs targeting the aberrant marker (CD7 or CD56) 

either conjugated to FITC or biotin. In some cases, the devices were stained with 

biotinylated mAbs targeting the isolation marker (i.e., anti-CD33-biotin on the CD33 cell 

isolation device). All biotinylated mAbs were indirectly stained via streptavidin-Cy3 

incubation (4°C, 30 min). After mAb incubation, cells were rinsed with 250 μL PBS, 

sequentially fixed, porated, and nuclear-stained via 10 min incubations with 2% 

formaldehyde, 0.1% Triton-X100, and 1 μg/mL DAPI. The devices were washed with 250 

μL PBS and released by incubation with the USER™ enzyme (4U/10 μL PBS) for 45 min at 

37°C to cleave the oligonucleotide linker.28 Cells were then washed from the chip with PBS.

The released cells were collected into separate wells of a flat-bottom 96 well plate (Argos 

Technologies) sealed with an optically clear Microseal® B adhesive film (Bio-Rad 

Laboratories), which was punctured just prior to release so that the device’s capillary could 

be fed into the well. Before visualization, the plate was centrifuged for 7 min at 250 rcf and 

the wells were imaged using a Zeiss Axiovert 200M microscope equipped with a 20X 

objective (0.4 NA, EC Plan NeoFluar®), an XBO 75 lamp, DAPI/FITC/Cy3/Cy5 filter sets 

(Omega Optical), a Cascade 1K EMCCD (Photometrics) camera and a MAC 5000 stage 

(Ludl Electronic Products), all of which were computer-controlled via Micro-Manager.32 

DAPI, FITC, Cy3, and Cy5 exposure times were 50, 1000, 2500, and 3500 ms, respectively. 

Each well was imaged via Micro-Manager’s grid collection software and the image sets 

were stitched and analyzed via a custom ImageJ macro, which identified nuclei and 

displayed fluorescence panels for phenotyping. FITC-labeled calibration beads were imaged 

under the same conditions, and beads differing in antibody binding capacities were 

identified by surveying fluorescence intensities on the FITC color channel of the imaging 

microscope.
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Results and Discussion

Sample processing

The microfluidic assay used a minimally invasive assay using a peripheral blood sample that 

permitted frequent testing, which for this study consisted of biweekly or less MRD testing 

through the first 100 days of post-SCT and monthly thereafter. For most samples, ~3 mL of 

peripheral blood was processed with 1 mL sent through one of three 50-channel, sinusoidal 

microfluidic devices that were modified with mAbs targeting CD33, CD34, and CD117 

(Figure 1). The blood sample, which was not fixed, fractionated or diluted, was processed 

through each chip over the course of 40 min; although this time frame is flexible because the 

processing time can be reduced by scaling to >250 sinusoidal channels in each device.22, 26 

Isolated CLCs were then identified by staining against the aberrant marker (i.e., CD7 or 

CD56) and leukocyte specific antigen CD45. CD45 staining precluded non-hematopoietic 

cell types such as CD34(+) circulating endothelial cells.33 Isolated cells were then fixed and 

DAPI-stained, and each subpopulation (CD33, CD34 or CD117) was released for imaging 

into separate wells of a flat-bottom titer plate. Cell release was enabled by enzymatically 

cleaving DNA oligonucleotide bifunctional linkers containing a uracil residue that anchored 

mAbs to the activated microfluidic surfaces. We have recently optimized and validated the 

entirety of this assay for several cell lines and clinical samples,34 including the CD34(+) 

KG-1 AML cell line for which the assay achieved 65% recovery for the KG-1 cells and 

>80% release efficiency after fixation.28 While the recovery for the MCF7 cell line using 

EpCAM mAbs has been reported to be ~97% for the sinusoidal chip, the relatively lower 

expression of the target antigen (CD34) by the KG-1 cell line and its smaller size account 

for the differences in the recovery.

Fluorescence microscopy was chosen for immunophenotyping the selected cells because the 

cell abundance was low (<20/mL) in some cases, making it difficult to secure reliable results 

using MFC. The microscope imaging was semi-automated; the microscope stage was 

computer-controlled to automatically capture images of the wells for all fluorescence color 

channels. Custom image-processing macros were composed to stitch the images together, 

identify nuclei and display fluorescence panels. The user could call each cell’s phenotype in 

a manner similar to a commercial CTC system.35 Cells that stained DAPI(+) and CD45(+) 

were identified as CLCs if they stained aberrant(+) (Figure 2). CLC size (10–30 μm) and 

high nuclear-to-cytoplasm ratio were not regarded as absolute criteria. Conventional 

microscopic preparation flattens and enlarges cells when plating the coverslip.36, 37 In 

general, CLCs were ~10–15 μm in diameter, similar to KG1 cells.28

The three devices were arranged in parallel rather than a serial configuration because co-

expression of the isolation markers was observed for some AML cell lines (Figure S1) and 

was considered likely in cells isolated from clinical samples as well. Antigen co-expression 

could bias results secured from the first device in the series with a large number of cells 

while depleting target cells from devices positioned downstream. The parallel arrangement 

also enabled separate interrogation of the CLC subpopulations to determine drug resistance 

for each subpopulation resulting from chemotherapy and other factors.38, 39 For example, 

circulating leukemic stem cells, which are the only leukemic cells capable of propagating 
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AML,38 would be isolated in the anti-CD34 and/or anti-CD33 device. These stem cells 

could be phenotypically identified by CD38 and CLL-1 expression38, 40 and further 

interrogated while simultaneously monitoring the leukemic blast progeny and normal blood 

cells.

Microfluidic affinity selection sensitivity and specificity

We assessed specificity of the microfluidic selection process by co-staining against the 

isolation marker, either CD33, CD34, or CD117 (Figure 2). The observed specificity (count 

of cells staining positive for the isolation marker divided by the total cell count) was 88–

99% with 2–33 cells/mL not showing discernable expression of the selection antigen. These 

results agree with our previous reports using this microfluidic in terms of the selection of 

CTCs in whole blood samples.41, 42

The efficiency of affinity selection depends on the cell’s antigen expression and the density 

of surface-confined mAbs.24, 27 Also, as the cell rolls along the microfluidic surfaces, the 

probability that a moving antigen will bind to the surface-confined mAb depends on the 

cell’s forward velocity, the associated residence time of the mAb and antigen in the reaction 

radius, the Ab-antigen binding kinetics,43 and the steric likelihood that the mAb interacts 

with the targeted epitope (analogous to a steric factor in collision theory).

The overall probability of cell recovery can be improved by accumulating a large number of 

binding events for a single cell. In the sinusoidal microfluidic device, this accumulation is 

engineered into the device by using continuous sinusoidal channels that offer rolling 

distances >250 μm as opposed to discrete surfaces provided by micropillars.24 For example, 

assuming a monolayer of mAbs on the surface, a cell rolling for 250 μm would encounter in 

excess of 16,000 mAb collisions. Because the number of binding events also scales with the 

number of antigens, recovery is dependent on the expression of the antigen and the target 

cell’s antigen density. This has been empirically observed by several groups using cell lines 

with variable antigen expression.44

There is a fundamental lower limit to antigen expression for cell recovery, which is set by an 

insufficient number of mAb-antigen complexes to hold the cell to the surface against the 

blood’s fluidic shear force. Bell45 provided a theoretical framework to assess the critical 

force at which a cell will detach from a surface (Fc) when it is bound by Nb bonds, each with 

a critical force of Fb and an equilibrium constant K (taken as 106 M−1) given by;

(1)

where k is Boltzmann’s constant; T is temperature (293.15 K); and r0 is the distance 

(assumed 0.5 nm) at which a bond ruptures. We set this total critical force equal to the shear 

force of blood flow in the sinusoidal device, which we have shown via fluid dynamics 

simulations to be on average 14 dynes/cm2 and herein used as the highest local shear force 

of 40 dynes/cm2.23 We then solved for Nb by assuming that the cell was flattened against the 

microfluidic surface, but did not compress the fluid flow. Using these assumptions, we 
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determined that 1.6 mAb/antigen bonds/μm2 could retain the cell against the shear force 

exerted by the blood flow through the device at a linear translational velocity of 2 mm/s.

For a 12 μm diameter cell with a surface area of ~450 μm2, the recovery limit for antigen 

expression is approximately 700 antigens per cell. In contrast, it is technically difficult to 

immunophenotype cells with only 700 antigens by fluorescence without a highly sensitive 

microscope. For example, we imaged ~12 μm beads that were coated with different levels of 

anti-IgG antibodies and functionalized with IgG-FITC, ranging in antigen binding capacity 

from 940 to 259,000 (Figure 3). Beads with an antigen binding capacity of 7,000 were 

detected but with weak signal. Beads with an antigen binding capacity of 940 could not 

reliably be detected from background.

Thus, it is possible to physically isolate a cell by positive-affinity selection but incorrectly 

classify the cell as negative for the marker by immunofluorescence (albeit, we did not 

consider the efficiency of isolation, which we discuss elsewhere24, 27). Close inspection of 

the top left cell in Figure 2F (FITC panel) shows extremely faint fluorescence signal similar 

to the 940 antigen binding capacity beads in Figure 3, but this was not counted as a CLC. 

Also, the specificity reported, which is based on staining for the isolation marker with good 

results (88–99% with 2–33 non-target cells/mL), does not contradict previously reported 

purities for CTC isolation (3.2 ±3.4 nonspecific leukocytes/mL blood, averaged from 66 

samples) that identified nonspecific binding leukocytes using CD45 (~200,000 molecules 

per cell).22, 23, 28, 46

Patient characteristics

Five AML patients (Pts #1–5) undergoing allogeneic SCT were recruited for post-SCT 

microfluidic AML MRD monitoring. Characteristics of the patients, such as cytogenetic/

molecular risk, leukemic associated phenotype aberrant marker and pre-SCT characteristics 

regarding disease burden are available in Table S1. Full leukemic associated phenotype 

panels and aberrant markers that were identified by MFC are provided in Table S2. An 

optimal aberrant marker that was expressed on a significant portion of the patient’s leukemic 

blasts and not on normal blood cells was chosen to identify CLCs for each patient (further 

discussion in the SI). The assay was designed to accommodate any aberrant marker; 

however, the 5 patients enrolled in this study were a prior found to express either CD7 or 

CD56. It is possible that the leukemic associated phenotype could change during disease 

progression, which most often involves up-regulation of the isolation markers (CD33, 

CD34, CD117)1, 47 that would improve assay recovery.24 However, CLCs may also lose or 

change the aberrant marker (i.e., CD7 or CD56).47 Thus, cells that stain aberrant(+) are 

referred to as CLCs while aberrant(−) cells are regarded as cells that include normal blood 

cells and potentially other leukemic cells even if they express the selection antigen (CD33, 

CD34 or CD117). In future studies, loss of the aberrant marker can be accommodated by 

employing wider staining panels that target all aberrant antigens (Table S2) to provide more 

complete AML coverage.47 The rare presence of normal and immature CD34(+) cells that 

co-express CD7 has been noted during marrow regeneration and T-lymphopoiesis.48 These 

cells are unlikely to be present in peripheral blood after full engraftment (~14 days post-

SCT) and thus, unlikely to affect CLC identification by the microfluidic assay. The presence 
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of either CD33(+) or CD117(+) cells that co-express CD7, however, should never occur in 

normal marrow or peripheral blood.

CLCs in clinical samples and early signs of impending relapse by microfluidic MRD 
surveillance

All data for each patient sample including CLC and aberrant(−) cell counts for each device 

are provided in Table S3. The five AML patients were sampled 39 times by the microfluidic 

assay; in comparison, only eight microscopy, PCR and/or MFC tests were administered over 

the same sampling interval because of the need for requiring the patient’s bone marrow in 

most cases. Three healthy donors were also analyzed (Table S4). An average of 151 ±89, 19 

±13, and 108 ±103 aberrant(−) cells/mL blood and 2 ±2, 0 ±1, and 1 ±1 cells nonspecifically 

stained aberrant(+) cells were isolated in the CD33, CD34, and CD117 devices, respectively, 

for these normal blood samples. Based on a 99% confidence level (3X the standard 

deviation), we established a threshold of 8, 3, and 5 aberrant(+) cells for MRD positivity in 

the CD33, CD34, and CD117 subpopulations, respectively.

At 137, 254, and 178 days post-SCT, Pts #3, #4, and #5, respectively, were alive and 

showed no signs of relapse. Pts #1 and #2 relapsed and died 95 and 118 days post-SCT, 

respectively. For both patients that relapsed, the microfluidic assay detected MRD well 

before PCR, MFC, microscopic or even FISH-based MRD testing performed on the same 

patient. However, the MRD assessments made by the microfluidic assay agreed to the 

results secured using PCR, MFC, and/or FISH MRD when these tests were performed on the 

patient (see Table S3 and the associated heat map). Tracking MRD progression is shown in 

Figure 4 and Figure 5 for Pt #1 and Pts #2–5, respectively, with annotations of MRD test 

results and antiviral treatments given in the figure.

Active cytomegalovirus infections are common in SCT patients as the regulating lymphoid 

immune system remains suppressed to avoid graft-versus-host disease. In this study, Pts #1–

4 experienced cytomegalovirus activation as detected by weekly PCR surveillance. These 

Pts were treated with antivirals (oral valgancyclovir or intravenous ganciclovir), which are 

known to cause myelosuppression, until cytomegalovirus was cleared. Cytomegalovirus 

replicates in myeloid cells and is in effect myelosuppressive, which is why it has been 

suggested that early cytomegalovirus infections can aid in long term remission. 

Cytomegalovirus may be cytotoxic to the MRD (virus-versus-leukemia effect) and/or cause 

myeloid cells to present antigens that induce a T-cell and/or natural killer cell attack 

(another graft-versus-leukemia mechanism).49

Figure 4A shows Pt #1’s total cell counts for CD33, CD34 and CD117 selection days 28 

through 85 as determined by the microfluidic assay and Figure 4B distinguishes these counts 

by aberrant staining. The microfluidic assay detected 17% CLCs for Pt #1 on day 28, 

whereas the NPM1 PCR assay of a bone marrow biopsy three days later was MRD(−) 

(Figure 4D). The PCR assay’s negative result indicated that the residual leukemic cells, at 

least those with the NPM1 mutation, were below the assay’s detection limit (1 mutated gene 

in 10,000 background copies). In the microfluidic MRD assay, aberrant(−) cells, which 

included normal donor cells, increased by ~40% 17 days later while CLC levels remained 

approximately constant. In addition, the presence of aberrant marker (CD7) for the CD34 

Jackson et al. Page 10

Analyst. Author manuscript; available in PMC 2016 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subpopulation was observed 45 days post-SCT. However, the total cell count decreased at 

day 57, perhaps due to cytomegalovirus activation (Figure 4A), but CLC percentages rose to 

63% with the observation of aberrant(+) cells in the CD33 subpopulation (Figure 4B).

CLC counts were high after day 57 and spiked to 92% at day 85. Relapse was confirmed by 

a peripheral blood smear at day 81. Unfortunately, the disease burden was already high 

(10% of the bone marrow) and the AML burden approximately doubled every two days 

(Figures 4D,E). Pt #1 died 95 days post-SCT. Considering myelosuppressive antiviral 

treatment from days 58 to 82, it may be suggested that the antiviral treatment delayed the 

rapid relapse progression that was observed after day 81 by microscopy (Figure 4D). We 

retrospectively highlight the microfluidic assay’s results at day 57 as a potential indicator of 

impending relapse for this patient characterized by increasing CLC levels and receding 

aberrant(−) cell numbers. Thus, the microfluidic assay was able to detect impending relapse 

28 days following SCT, while microscopy detected relapse in a bone marrow biopsy at day 

85 when disease burden was high.

Pt #2’s MRD progression (Figures 5A,B) from days 7 to 28 post-SCT was very similar to Pt 

#1’s onset of relapse with CLC levels increasing and aberrant(−) cells receding at day 28. 

However, microscopic analysis was MRD(−) at day 30 and the microfluidic assay’s cell 

counts dropped precipitously at day 40. Pt #2 was treated with antivirals for an active 

cytomegalovirus infection from days 41 to 69. During treatment, all cell counts recovered 

slowly and after lifting treatment, a surge of CD33(+)/aberrant(−) cells was observed at day 

84 (Figure S2) that may be attributed to a “left shift” immune response to late-onset 

cytomegalovirus disease or severe physiological burden, where the marrow is stimulated to 

produce immature CD33(+)/aberrant(−) cells that spill into the peripheral blood (also 

supported by MFC analysis or peripheral blood on day 79 that indicated the presence of 

<1% immature cells). Regardless, CLC counts increased steadily and the last sample for 

microfluidic analysis (day 98) was characterized by a low aberrant(−) cell count and high 

CLC count, most notably with CD34(+)/aberrant(+) CLCs comprising 54% of all selected 

cells. It is possible that the CD34(+)/CD7(+) subpopulation may have contained immature, 

non-leukemic blasts, which are sometimes observed in regenerating marrow;48 however, 

there were relatively few CD34(+)/CD7(+) cells at day 14, when the marrow may have been 

regenerating from initial engraftment and so we would expect the CD34(+)/CD7(+) 

subpopulation at day 98 to contain CLCs almost exclusively. Further, CD33(+) and 

CD117(+) cells aberrantly expressing CD7 (a T cell antigen) should never be observed in 

normal marrow, regenerating or otherwise, all of which suggested persistent leukemic MRD. 

Subsequent sampling of this patient was not possible as this patient died 118 days post-SCT.

Pt #3 had the most acute MRD progression with 1,430 CLCs/mL (50% CLCs) developing at 

day 30 even though the patient was MRD(−) at day 13 as noted by blood smear assays using 

microscopy (Figures 5C,D). This may reflect the patient’s pre-SCT chemotherapy regimen, 

which was less intense than Pts #1 and #2 due to Pt #3’s age (Table S1). During antiviral 

treatment from days 41 to 69, the cell counts remained approximately the same as the day 30 

results until day 69, when both CLC and aberrant(−) counts slowly declined. At 90 and 121 

days post-SCT, Pt #3’s samples were MRD(−) as was microscopic analysis at day 89.
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Pt #4’s MRD profile is rather unique, remaining MRD(+) but with low CLC counts (11–57 

CLCs/mL) for 157 days except for one MRD(−) result at 81 days post-SCT (Figure 5E,F). 

During this time, Pt #4’s MRD was just detectable by FISH at day 88 but was not detected 

by several tests at day 145. Pt #4 incurred cytomegalovirus activation and was treated 

between days 174 and 214, and there was a notable increase in aberrant(−) cell counts at day 

214. However, the next sample at day 246 showed a spike of CD33(+) CLCs and low 

aberrant(−) cell counts.

Pt #5 is the only patient that did not test positive for a cytomegalovirus infection during 

tracking for 146 days (Figure 5H). Pt #5 had been consistently MRD(+) by NPM1-PCR, but 

with low disease burden. The microfluidic assay indicated consistently MRD(+) with CLC 

levels spiking at days 68 and 85 post-SCT but then sharply declining at day 118 (Figure 5G). 

The microfluidic assay at day 146 was MRD(−), as was NPM1 PCR at day 132. The 

aberrant(−) cell counts correlated with the CLC counts (Figure 5H); we speculate a graft-

versus-leukemia response occurred.

In summary, Pts #1–3 had very high CLC counts and experienced the same viral activation 

within a few months post-SCT. These patients represent three divergent scenarios. Pt #1 

rapidly progressed towards relapse; Pt #2 experienced a recession of all myeloid counts, 

presumably due to cytomegalovirus activation, but then relapsed; and Pt #3 CLC counts 

receded almost entirely and is currently in complete remission. While we sampled the 

patients at a sufficient frequency to observe the reported trends, we still have limited data for 

each sample to confidently determine the nature of these trends. However, we can speculate 

that virus-versus-leukemia effects played a role in the progression of Pts #2 and #3. Pt #5 

was similar in progression to Pt #3 yet did not experience a viral infection. It is possible that 

the recession of Pt #5’s MRD was due to graft-versus-leukemia effects that acted similarly 

to the proposed virus-versus-leukemia mechanism.49 Lastly, Pt #4 was anomalous to the 

other patients, progressing to high CLC counts and experiencing a viral infection far later 

(>six months post-SCT).

Shifts in CLC subpopulations through relapse

Frequent monitoring of CLC subpopulations can provide a real time insight into patient-

specific MRD progression. It has been observed that both genetic38, 39 and phenotypic1, 47 

evolution occurs as residual leukemic cells experience selective pressures, which range from 

chemotherapy to nutrient, oxygen and space deprivation38 and likely from interplays 

between residual leukemia, the grafted immune system, infections, and clinical treatments. 

All of these variables contribute to heterogeneous clonal subpopulations that compete 

towards forming dominant AML clone(s) that are, in effect, relapse.38 Previous methods 

have been limited for retrospective comparisons of the primary and relapsed tumors. But, 

with the microfluidic assay and its high sensitivity even when sampling peripheral blood, it 

may be possible to monitor acute clonal responses to selective pressures.

For this reason, the CLC and aberrant(−) subpopulations (differing by the target isolation 

antigen: CD33, CD34 or CD117) were independently analyzed by selecting them in 

different devices. While it is unlikely all CLC subpopulations are mutually exclusive due to 

co-expression of the targeted antigen, there may be CLC subpopulations that solely express 
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one antigen or have very weak expression of the other antigens (Figure S1). One case in 

point is Pt #1 (Figure 4C): from days 45 to 85, the CD34(+) CLCs remain fairly constant at 

3–4%; CD117(+) CLCs steadily increased from 10% to 65%; and CD33(+) CLCs appeared 

at day 57 but their number density fluctuated thereafter. Similar patterns were not observed 

in the aberrant(−) subpopulations (Figure S3), which were isolated in the same devices as 

the CLC subpopulations. Thus, it is most likely that we have observed genetically distinct 

CLC clonal subpopulations or that the gene expression of the CLCs is highly variable.

The CLC subpopulations in each patient’s MRD presented a unique profile. We also found 

no clear pattern in the progression of any CLC or aberrant(−) subpopulation between 

patients (see Figure S3). While there are cases where the progression of the CLC 

subpopulations is mirrored by the aberrant(−) subpopulations, which may reflect 

physiological pressures on the bone marrow environment, there are many cases where 

progression of the CLC and aberrant(−) subpopulations are extremely dissimilar. These 

results may reflect AML’s inter- and intra-patient heterogeneity.38 To explore the 

significance of these subpopulations as the AML evolves post-SCT, we plan future studies 

that will gather more information from each sample, including gene and/or protein 

expression profiling and genome sequencing of the CLC subpopulations.

Conclusions

This study represents the first microfluidic endeavor for monitoring AML patients following 

stem cell transplantation. The microfluidic assay was able to isolate and phenotypically 

identify leukemic cells circulating in a patient’s peripheral blood. In this pilot clinical study, 

we monitored five AML patients following SCT. Because the assay required peripheral 

blood and not a bone marrow biopsy, 39 microfluidic tests could be carried out compared to 

only eight PCR, MFC, FISH, and/or microscopy tests, because they required highly invasive 

bone marrow biopsies in most cases. Because we were able to frequently test and observe 

changes in MRD levels, we identified signs of impending relapse earlier than bone marrow-

based tests, which could enable therapeutic interventions at low disease burden and result in 

better outcomes for the patients. We also observed a case where late PCR detection of a 

patient’s MRD translated to rapid relapse with the tumor doubling every two days with 

patient death shortly thereafter. We also observed the heterogeneity in AML; the CLCs and 

non-aberrant cells progressed variably, unpredictably, and, as we suspect, in response to 

graft- and virus-versus-leukemia effects as the bone marrow replenishes. We are now 

developing a multifaceted microfluidic system capable of quantitative and in-line 

microfluidic flow cytometry with integrated flow sorting that will be able to provide 

molecular information on various CLC subpopulations, such as gene expression and gene 

mutation analysis of the CLCs, as well as surveying the lymphoid system29 for its graft-

versus-leukemia capability.

The microfluidic assay demonstrated herein the ability to track response to therapy in a 

minimally invasive fashion. The assay could also be used to provide a venue for the detailed 

management of a particular patient’s cancer, especially in monitoring a patient’s response to 

initial chemotherapy regimens, as well as long term monitoring for disease recurrence. This 

microfluidic assay could also be adapted to manage chronic lymphocytic leukemia (CLL), B 
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cell lymphomas,50 and Hodgkin’s lymphoma by programming into the microfluidic chips, 

the appropriate selection mAbs and aberrant markers.51 In addition, the presented 

microfluidic assay could also be envisaged as a companion diagnostic for the discovery of 

new therapies for various leukemic diseases. With these observations and the data presented 

in this manuscript, our reported microfluidic assay can assist in enabling precision medicine 

for leukemic-based diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Whole blood is processed through three microfluidic devices modified with mAbs 

specific for CD33 (red), CD34 (yellow), and CD117 (blue) expressing cells. Arrows indicate 

direction of blood flow through the device. (B) SEMs of the sinusoidal channel array (50 

channels in the array) and the entrance of the single channel that addresses all sinusoidal 

channels. mAb-coated surfaces were false-colored red to represent an anti-CD33 mAb 

device. (C) Schematic of the affinity isolation assay. Antigen expressing cells (here 

CD33(+) cells used as an example) bind to surface-tethered mAbs and are retained in the 

device while other blood components are passed through the device. Selected cells are then 

immunostained against CD45 and the aberrant marker (e.g., with anti-CD7 or anti-CD56 

fluorescent mAbs), followed by fixation and nuclear staining. (D) Selected cells are released 

from the capture surface and carried hydrodynamically into flat-bottomed wells, where the 

cells are imaged by semi-automated fluorescence microscopy. CLCs are identified by 

positive aberrant staining (aberrant(+)) and positive CD45 and DAPI staining, whereas other 

blood components only show CD45 and DAPI staining (aberrant(−)).
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Figure 2. 
Immunophenotyping of aberrant(+) CLCs and aberrant(−) cells isolated by targeting (A,B) 
CD33, (C,D) CD34, and (E,F) CD117, respectively. All cells were DAPI(+)/CD45(+) and 

positive for at least one of the isolation markers (CD33, CD34, or CD117). All images were 

taken from Pt #1 (CD7 aberrant marker) 85 days post-SCT. The cells in this panel were 

stained using DAPI (nucleus), and mAbs directed against CD7 (FITC), CD45 (Cy5) and 

finally, the selection marker (CD33, CD34, CD117; Cy3). The images were acquired using 

an inverted microscope and the appropriate filter cube.
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Figure 3. 
(A) FITC fluorescence, (B) brightfield, and (C) overlay images of calibration beads with 

different antigen binding capacity levels (see (C) annotations for the approximate load of the 

fluorescent antibodies per bead). Image contrast settings were selected to highlight low 

intensity fluorescence; brightly fluorescent beads were not saturating the CCD. FITC 

exposure times were identical to those used for CLC identification.
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Figure 4. 
(A–C) Microfluidic monitoring of Pt #1 from 28 to 85 days post-SCT. (A) Total cell count, 

which represents the cumulative number of cells counted from all three subpopulations 

(CD33, CD34 and CD117) selected in the three separate microfluidic devices and all 

phenotypes (aberrant(+) and aberrant(−)). (B) Cell counts of aberrant(+) and aberrant(−) 

phenotypes but cumulative for all microfluidic devices used in the assay. (C) Cell counts of 

aberrant(+) and aberrant(−) cells discerned by each isolation antigen (CD33, CD34, or 

CD117). (D) Results for PCR (NPM1 gene) and peripheral blood smear MRD assays. 

Relapse was confirmed on day 81 by a peripheral blood smear test (dagger mark). This 

patient died 95 days post-SCT. (E) An image of the Wright-Geimsa stained peripheral blood 

smear from day 85, which showed two blasts with open chromatin and weak intensity from 

the cytoplasm (magnification was 100x). PB = Peripheral Blood; NA = not applicable.
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Figure 5. 
CLC counts and aberrant(−) cells for (A,B) Pt #2, (C,D) Pt #3, (E,F) Pt #4 and (G,H) Pt #5. 

Cell counts are color coded according to the targeted marker used for CLC selection. Results 

from FISH, PCR, blood smear and MFC MRD diagnostics, which used bone marrow 

biopsies unless noted otherwise, and the time frames for antiviral therapy are shown in the 

figures. Linear connections between events are for visualization purposes only.
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