41 research outputs found

    The small heat shock protein B8 (HSPB8) modulates proliferation and migration of breast cancer cells

    Get PDF
    open12noBreast cancer (BC) is one of the major causes of cancer death in women and is closely related to hormonal dysregulation. Estrogen receptor (ER)-positive BCs are generally treated with anti hormone therapy using antiestrogens or aromatase inhibitors. However, BC cells may become resistant to endocrine therapy, a process facilitated by autophagy, which may either promote or suppress tumor expansion. The autophagy facilitator HSPB8 has been found overexpressed in some BC. Here we found that HSPB8 is highly expressed and differentially modulated by natural or synthetic selective ER modulators (SERMs), in the triple-positive hormone-sensitive BC (MCF-7) cells, but not in triple-negative MDA-MB-231 BC cells. Specific SERMs induced MCF-7 cells proliferation in a HSPB8 dependent manner whereas, did not modify MDA-MB-231 cell growth. ER expression was unaffected in HSPB8-depleted MCF-7 cells. HSPB8 over-expression did not alter the distribution of MCF-7 cells in the various phases of the cell cycle. Conversely and intriguingly, HSPB8 downregulation resulted in an increased number of cells resting in the G0/G1 phase, thus possibly reducing the ability of the cells to pass through the restriction point. In addition, HSPB8 downregulation reduced the migratory ability of MCF-7 cells. None of these modifications were observed, when another small HSP (HSPB1), also expressed in MCF-7 cells, was downregulated. In conclusion, our data suggest that HSPB8 is involved in the mechanisms that regulate cell cycle and cell migration in MCF-7 cells.openPiccolella, Margherita; Crippa, Valeria; Cristofani, Riccardo; Rusmini, Paola; Galbiati, Mariarita; Elena Cicardi, Maria; Meroni, Marco; Ferri, Nicola; Morelli, Federica F; Carra, Serena; Messi, Elio; Poletti, AngeloPiccolella, Margherita; Crippa, Valeria; Cristofani, Riccardo; Rusmini, Paola; Galbiati, Mariarita; Elena Cicardi, Maria; Meroni, Marco; Ferri, Nicola; Morelli, Federica F; Carra, Serena; Messi, Elio; Poletti, Angel

    Peptide-nucleic acid-mediated enriched polymerase chain reaction as a key point for non-invasive prenatal diagnosis of β-thalassemia

    Get PDF
    The presence of fetal DNA in maternal plasma can be exploited to develop new procedures for non-invasive prenatal diagnosis. Tests to detect 7 frequent beta-globin gene mutations in people of Mediterranean origin were applied to the analysis of maternal plasma in couples where parents carried different mutations. A mutant enrichment amplification protocol was optimized by using peptide nucleic acids (PNAs) to clamp maternal wild-type alleles. By this approach, 41 prenatal diagnoses were performed by microelectronic microchip analysis, with total concordance of results obtained on fetal DNA extracted from chorionic villi. Among these, 27/28 were also confirmed by direct sequencing and 4 by pyrosequencing

    Re

    Full text link

    Pregroup Analysis of Persian Sentences

    No full text
    In muscle tissue the protein caveolin-3 forms caveolae – flask-shaped invaginations localized on the cytoplasmic surface of the sarcolemmal membrane. Caveolae have a key role in the maintenance of plasma membrane integrity and in the processes of vesicular trafficking and signal transduction. Mutations in the caveolin-3 gene lead to skeletal muscle pathology through multiple pathogenetic mechanisms. Indeed, caveolin-3 deficiency is associated to sarcolemmal membrane alterations, disorganization of skeletal muscle T-tubule network and disruption of distinct cell-signaling pathways. To date, there have been 30 caveolin-3 mutations identified in the human population. Caveolin-3 defects lead to four distinct skeletal muscle disease phenotypes: limb girdle muscular dystrophy, rippling muscle disease, distal myopathy, and hyperCKemia. In addition, one caveolin-3 mutant has been described in a case of hypertrophic cardiomyopathy. Many patients show an overlap of these symptoms and the same mutation can be linked to different clinical phenotypes. This variability can be related to additional genetic or environmental factors. This review will address caveolin-3 biological functions in muscle cells and will describe the muscle and heart disease phenotypes associated with caveolin-3 mutations
    corecore