40 research outputs found

    Maternal and food microbial sources shape the infant microbiome of a rural Ethiopian population

    Get PDF
    The human microbiome seeding starts at birth, when pioneer microbes are acquired mainly from the mother. Mode of delivery, antibiotic prophylaxis, and feeding method have been studied as modulators of mother-to-infant microbiome transmission, but other key influencing factors like modern westernized lifestyles with high hygienization, high-calorie diets, and urban settings, compared with non-westernized lifestyles have not been investigated yet. In this study, we explored the mother-infant sharing of characterized and uncharacterized microbiome members via strain-resolved metagenomics in a cohort of Ethiopian mothers and infants, and we compared them with four other cohorts with different lifestyles. The westernized and non-westernized newborns’ microbiomes composition overlapped during the first months of life more than later in life, likely reflecting similar initial breast-milk-based diets. Ethiopian and other non-westernized infants shared a smaller fraction of the microbiome with their mothers than did most westernized populations, despite showing a higher microbiome diversity, and uncharacterized species represented a substantial fraction of those shared in the Ethiopian cohort. Moreover, we identified uncharacterized species belonging to the Selenomonadaceae and Prevotellaceae families specifically present and shared only in the Ethiopian cohort, and we showed that a locally produced fermented food, injera, can contribute to the higher diversity observed in the Ethiopian infants’ gut with bacteria that are not part of the human microbiome but are acquired through fermented food consumption. Taken together, these findings highlight the fact that lifestyle can impact the gut microbiome composition not only through differences in diet, drug consumption, and environmental factors but also through its effect on mother-infant strain-sharing patterns

    Effects of initial-state dynamics on collective flow within a coupled transport and viscous hydrodynamic approach

    Full text link
    We evaluate the effects of preequilibrium dynamics on observables in ultrarelativistic heavy-ion collisions. We simulate the initial nonequilibrium phase within A MultiPhase Transport (AMPT) model, while the subsequent near-equilibrium evolution is modeled using (2+1)-dimensional relativistic viscous hydrodynamics. We match the two stages of evolution carefully by calculating the full energy-momentum tensor from AMPT and using it as input for the hydrodynamic evolution. We find that when the preequilibrium evolution is taken into account, final-state observables are insensitive to the switching time from AMPT to hydrodynamics. Unlike some earlier treatments of preequilibrium dynamics, we do not find the initial shear viscous tensor to be large. With a shear viscosity to entropy density ratio of 0.120.12, our model describes quantitatively a large set of experimental data on Pb+Pb collisions at the Large Hadron Collider(LHC) over a wide range of centrality: differential anisotropic flow vn(pT) (n=26)v_n(p_T) ~(n=2-6), event-plane correlations, correlation between v2v_2 and v3v_3, and cumulant ratio v2{4}/v2{2}v_2\{4\}/v_2\{2\}.Comment: 10 pages, v2: minor revisio

    Improved sampling and DNA extraction procedures for microbiome analysis in food-processing environments

    Get PDF
    [EN] Deep investigation of the microbiome of food-production and foodprocessing environments through whole-metagenome sequencing (WMS) can provide detailed information on the taxonomic composition and functional potential of the microbial communities that inhabit them, with huge potential benefits for environmental monitoring programs. However, certain technical challenges jeopardize the application of WMS technologies with this aim, with the most relevant one being the recovery of a sufficient amount of DNA from the frequently low-biomass samples collected from the equipment, tools and surfaces of food-processing plants. Here, we present the first complete workflow, with optimized DNA-purification methodology, to obtain high-quality WMS sequencing results from samples taken from food-production and food-processing environments and reconstruct metagenome assembled genomes (MAGs). The protocol can yield DNA loads >10 ng in >98% of samples and >500 ng in 57.1% of samples and allows the collection of, on average, 12.2 MAGs per sample (with up to 62 MAGs in a single sample) in ~1 week, including both laboratory and computational work. This markedly improves on results previously obtained in studies performing WMS of processing environments and using other protocols not specifically developed to sequence these types of sample, in which <2 MAGs per sample were obtained. The full protocol has been developed and applied in the framework of the European Union project MASTER (Microbiome applications for sustainable food systems through technologies and enterprise) in 114 food-processing facilities from different production sectors.SIThis work was funded by the European Commission under the European Union’s Horizon 2020 research and innovation program under grant agreement no. 818368 (MASTER). C.B. is grateful to Junta de Castilla y León and the European Social Fund for awarding her a pre-doctoral grant (BOCYL-D-07072020-6). A.P. is grateful to Ministerio de Ciencia e Innovación for awarding her a pre-doctoral grant (PRE2021-098910). N.M.Q. is currently funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101034371. We thank AV Star Systems for their role in creating the Supplementary Video, and M. Coakley and S. Mortensen for their help in its preparation

    The \u3ci\u3ePrevotella copri\u3c/i\u3e Complex Comprises Four Distinct Clades Underrepresented in Westernized Populations

    Get PDF
    Prevotella copri is a common human gut microbe that has been both positively and negatively associated with host health. In a cross-continent metaanalysis exploiting \u3e6,500 metagenomes, we obtained \u3e1,000 genomes and explored the genetic and population structure of P. copri. P. copri encompasses four distinct clades (\u3e10% inter-clade genetic divergence) that we propose constitute the P. copri complex, and all clades were confirmed by isolate sequencing. These clades are nearly ubiquitous and co-present in non-Westernized populations. Genomic analysis showed substantial functional diversity in the complex with notable differences in carbohydrate metabolism, suggesting that multi-generational dietary modifications may be driving reduced prevalence in Westernized populations. Analysis of ancient metagenomes highlighted patterns of P. copri presence consistent with modern non-Westernized populations and a clade delineation time pre-dating human migratory waves out of Africa. These findings reveal that P. copri exhibits a high diversity that is underrepresented in Western-lifestyle populations

    Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma

    Get PDF
    The composition of the gut microbiome has been associated with clinical responses to immune checkpoint inhibitor (ICI) treatment, but there is limited consensus on the specific microbiome characteristics linked to the clinical benefits of ICIs. We performed shotgun metagenomic sequencing of stool samples collected before ICI initiation from five observational cohorts recruiting ICI-naive patients with advanced cutaneous melanoma (n = 165). Integrating the dataset with 147 metagenomic samples from previously published studies, we found that the gut microbiome has a relevant, but cohort-dependent, association with the response to ICIs. A machine learning analysis confirmed the link between the microbiome and overall response rates (ORRs) and progression-free survival (PFS) with ICIs but also revealed limited reproducibility of microbiome-based signatures across cohorts. Accordingly, a panel of species, including Bifidobacterium pseudocatenulatum, Roseburia spp. and Akkermansia muciniphila, associated with responders was identified, but no single species could be regarded as a fully consistent biomarker across studies. Overall, the role of the human gut microbiome in ICI response appears more complex than previously thought, extending beyond differing microbial species simply present or absent in responders and nonresponders. Future studies should adopt larger sample sizes and take into account the complex interplay of clinical factors with the gut microbiome over the treatment course

    Different pathways of degradation of SP-A and saturated phosphatidylcholine by alveolar macrophages.

    No full text
    Alveolar macrophages degrade surfactant protein (SP) A and saturated phosphatidycholine [dipalmitoylphosphatidylcholine (DPPC)]. To clarify this process, using rabbit alveolar macrophages, we analyzed the effect of drugs known to affect phagocytosis, pinocytosis, clathrin-mediated uptake, caveolae, the cytoskeleton, lysosomal pH, protein kinase C, and phosphatidylinositol 3-kinase (PI3K) on the degradation of SP-A and DPPC. We found the following: 1) SP-A binds to the plasma membrane, is rapidly internalized, and then moves toward degradative compartments. Uptake could be clathrin mediated, whereas phagocytosis, pinocytosis, or the use of caveolae are less likely. An intact cytoskeleton and an acidic milieu are necessary for the degradation of SP-A. 2) Stimulation of protein kinase C increases the degradation of SP-A. 3) PI3K influences the degradation of SP-A by regulating both the speed of internalization and subsequent intracellular steps, but its inhibition does not prevent SP-A from reaching the lysosomal compartment. 4) The degradation of DPPC is unaffected by most of the treatments able to influence the degradation of SP-A. Thus it appears that DPPC is degraded by alveolar macrophages through mechanisms very different from those utilized for the degradation of SP-A

    Draft genome sequence of a representative strain of the Catenibacterium genus isolated from human feces

    No full text
    A strain from a previously undescribed species belonging to the Catenibacterium genus was isolated from the stool of a healthy volunteer. The strain is strictly anaerobic, and the genome encodes a CRISPR-Cas system and genes related to trimethylamine production

    Thermal Therapy Modulation of the Psoriasis-Associated Skin and Gut Microbiome

    No full text
    Abstract Introduction Psoriasis is a systemic immune-mediated disease primarily manifesting as skin redness and inflammation. Balneotherapy proved to be a successful non-pharmacological option to reduce the skin areas affected by the disease, but the specific mechanisms underlying this effect have not been elucidated yet. Here we test the hypothesis that the effect of thermal treatments on psoriatic lesions could be partially mediated by changes in the resident microbial population, i.e., the microbiome. Methods In this study, we enrolled patients with psoriasis and monitored changes in their skin and gut microbiome after a 12-bath balneotherapy course with a combination of 16S rRNA amplicon sequencing and metagenomics. Changes in the resident microbiome were then correlated with thermal therapy outcomes evaluated as changes in Psoriasis Area and Severity Index (PASI) and Body Surface Area index (BSA). Results The amplicon sequencing analysis of the skin microbiome showed that after thermal treatment the microbiome composition of affected areas improved to approach that typical of unaffected skin. We moreover identified some low-abundance bacterial biomarkers indicative of disease status and treatment efficacy, and we showed via metagenomic sequencing that thermal treatments and thermal water drinking affect the fecal microbiome to host more species associated with favorable metabolic health. Conclusions Changes in lower-abundance microbial taxa presence and abundance could be the basis for the positive effect of thermal water treatment and drinking on the cutaneous and systemic symptomatology of psoriasis

    Lung and Gut Microbiota Changes Associated with Pseudomonas aeruginosa Infection in Mouse Models of Cystic Fibrosis

    Get PDF
    Cystic fibrosis (CF) disease leads to altered lung and gut microbiomes compared to healthy subjects. The magnitude of this dysbiosis is influenced by organ-specific microenvironmental conditions at different stages of the disease. However, how this gut-lung dysbiosis is influenced by Pseudomonas aeruginosa chronic infection is unclear. To test the relationship between CFTR dysfunction and gut-lung microbiome under chronic infection, we established a model of P. aeruginosa infection in wild-type (WT) and gut-corrected CF mice. Using 16S ribosomal RNA gene, we compared lung, stool, and gut microbiota of C57Bl/6 Cftr tm1UNCTgN(FABPCFTR) or WT mice at the naïve state or infected with P. aeruginosa.&nbsp;P. aeruginosa infection influences murine health significantly changing body weight both in CF and WT mice. Both stool and gut microbiota revealed significantly higher values of alpha diversity in WT mice than in CF mice, while lung microbiota showed similar values. Infection with P. aeruginosa did not changed the diversity of the stool and gut microbiota, while a drop of diversity of the lung microbiota was observed compared to non-infected mice. However, the taxonomic composition of gut microbiota was shown to be influenced by P. aeruginosa infection in CF mice but not in WT mice. This finding indicates that P. aeruginosa chronic infection has a major impact on microbiota diversity and composition in the lung. In the gut, CFTR genotype and P. aeruginosa infection affected the overall diversity and taxonomic microbiota composition, respectively. Overall, our results suggest a cross-talk between lung and gut microbiota in relation to P. aeruginosa chronic infection and CFTR mutation
    corecore