102 research outputs found

    Do highly divergent loci reside in genomic regions affecting reproductive isolation? A test using next-generation sequence data in Timema stick insects

    Get PDF
    Background: Genetic divergence during speciation with gene flow is heterogeneous across the genome, with some regions exhibiting stronger differentiation than others. Exceptionally differentiated regions are often assumed to experience reduced introgression, i.e., reduced flow of alleles from one population into another because such regions are affected by divergent selection or cause reproductive isolation. In contrast, the remainder of the genome can be homogenized by high introgression. Although many studies have documented variation across the genome in genetic differentiation, there are few tests of this hypothesis that explicitly quantify introgression. Here, we provide such a test using 38,304 SNPs in populations of Timema cristinae stick insects. We quantify whether loci that are highly divergent between geographically separated (‘allopatric’) populations exhibit unusual patterns of introgression in admixed populations. To the extent this is true, highly divergent loci between allopatric populations contribute to reproductive isolation in admixed populations. Results: As predicted, we find a substantial association between locus-specific divergence between allopatric populations and locus-specific introgression in admixed populations. However, many loci depart from this relationship, sometimes strongly so. We also report evidence for selection against foreign alleles due to local adaptation. Conclusions: Loci that are strongly differentiated between allopatric populations sometimes contribute to reproductive isolation in admixed populations. However, geographic variation in selection and local adaptation, in aspects of genetic architecture (such as organization of genes, recombination rate variation, number and effect size of variants contributing to adaptation, etc.), and in stochastic evolutionary processes such as drift can cause strong differentiation of loci that do not always contribute to reproductive isolation. The results have implications for the theory of ‘genomic islands of speciation’

    Experimental evidence for ecological selection on genome variation in the wild

    Get PDF
    Understanding natural selection's effect on genetic variation is a major goal in biology, but the genome-scale consequences of contemporary selection are not well known. In a release and recapture field experiment we transplanted stick insects to native and novel host plants and directly measured allele frequency changes within a generation at 186 576 genetic loci. We observed substantial, genome-wide allele frequency changes during the experiment, most of which could be attributed to random mortality (genetic drift). However, we also documented that selection affected multiple genetic loci distributed across the genome, particularly in transplants to the novel host. Host-associated selection affecting the genome acted on both a known colour-pattern trait as well as other (unmeasured) phenotypes. We also found evidence that selection associated with elevation affected genome variation, although our experiment was not designed to test this. Our results illustrate how genomic data can identify previously underappreciated ecological sources and phenotypic targets of selection

    Scaling Analysis of Fluctuating Strength Function

    Get PDF
    We propose a new method to analyze fluctuations in the strength function phenomena in highly excited nuclei. Extending the method of multifractal analysis to the cases where the strength fluctuations do not obey power scaling laws, we introduce a new measure of fluctuation, called the local scaling dimension, which characterizes scaling behavior of the strength fluctuation as a function of energy bin width subdividing the strength function. We discuss properties of the new measure by applying it to a model system which simulates the doorway damping mechanism of giant resonances. It is found that the local scaling dimension characterizes well fluctuations and their energy scales of fine structures in the strength function associated with the damped collective motions.Comment: 22 pages with 9 figures; submitted to Phys. Rev.

    Genomic differentiation during speciation-with-gene-flow: Comparing geographic and host-related variation in divergent life history adaptation in rhagoletis pomonella

    Get PDF
    A major goal of evolutionary biology is to understand how variation within populations gets partitioned into differences between reproductively isolated species. Here, we examine the degree to which diapause life history timing, a critical adaptation promoting population divergence, explains geographic and host-related genetic variation in ancestral hawthorn and recently derived apple-infesting races of Rhagoletis pomonella. Our strategy involved combining experiments on two different aspects of diapause (initial diapause intensity and adult eclosion time) with a geographic survey of genomic variation across four sites where apple and hawthorn flies co-occur from north to south in the Midwestern USA. The results demonstrated that the majority of the genome showing significant geographic and host-related variation can be accounted for by initial diapause intensity and eclosion time. Local genomic differences between sympatric apple and hawthorn flies were subsumed within broader geographic clines; allele frequency differences within the races across the Midwest were two to three-fold greater than those between the races in sympatry. As a result, sympatric apple and hawthorn populations displayed more limited genomic clustering compared to geographic populations within the races. The findings suggest that with reduced gene flow and increased selection on diapause equivalent to that seen between geographic sites, the host races may be recognized as different genotypic entities in sympatry, and perhaps species, a hypothesis requiring future genomic analysis of related sibling species to R. pomonella to test. Our findings concerning the way selection and geography interplay could be of broad significance for many cases of earlier stages of divergence-with-gene flow, including (1) where only modest increases in geographic isolation and the strength of selection may greatly impact genetic coupling and (2) the dynamics of how spatial and temporal standing variation is extracted by selection to generate differences between new and discrete units of biodiversity

    Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap

    Full text link
    We study the numerical resolution of the time-dependent Gross-Pitaevskii equation, a non-linear Schroedinger equation used to simulate the dynamics of Bose-Einstein condensates. Considering condensates trapped in harmonic potentials, we present an efficient algorithm by making use of a spectral Galerkin method, using a basis set of harmonic oscillator functions, and the Gauss-Hermite quadrature. We apply this algorithm to the simulation of condensate breathing and scissors modes.Comment: 23 pages, 5 figure

    Kinetics and Jamming Coverage in a Random Sequential Adsorption of Polymer Chains

    Get PDF
    Using a highly efficient Monte Carlo algorithm, we are able to study the growth of coverage in a random sequential adsorption (RSA) of self-avoiding walk (SAW) chains for up to 10^{12} time steps on a square lattice. For the first time, the true jamming coverage (theta_J) is found to decay with the chain length (N) with a power-law theta_J propto N^{-0.1}. The growth of the coverage to its jamming limit can be described by a power-law, theta(t) approx theta_J -c/t^y with an effective exponent y which depends on the chain length, i.e., y = 0.50 for N=4 to y = 0.07 for N=30 with y -> 0 in the asymptotic limit N -> infinity.Comment: RevTeX, 5 pages inclduing figure

    Standing geographic variation in eclosion time and the genomics of host race formation in Rhagoletis pomonella fruit flies.

    Get PDF
    Taxa harboring high levels of standing variation may be more likely to adapt to rapid environmental shifts and experience ecological speciation. Here, we characterize geographic and host-related differentiation for 10,241 single nucleotide polymorphisms in Rhagoletis pomonella fruit flies to infer whether standing genetic variation in adult eclosion time in the ancestral hawthorn (Crataegus spp.)-infesting host race, as opposed to new mutations, contributed substantially to its recent shift to earlier fruiting apple (Malus domestica). Allele frequency differences associated with early vs. late eclosion time within each host race were significantly related to geographic genetic variation and host race differentiation across four sites, arrayed from north to south along a 430-km transect, where the host races co-occur in sympatry in the Midwest United States. Host fruiting phenology is clinal, with both apple and hawthorn trees fruiting earlier in the North and later in the South. Thus, we expected alleles associated with earlier eclosion to be at higher frequencies in northern populations. This pattern was observed in the hawthorn race across all four populations; however, allele frequency patterns in the apple race were more complex. Despite the generally earlier eclosion timing of apple flies and corresponding apple fruiting phenology, alleles on chromosomes 2 and 3 associated with earlier emergence were paradoxically at lower frequency in the apple than hawthorn host race across all four sympatric sites. However, loci on chromosome 1 did show higher frequencies of early eclosion-associated alleles in the apple than hawthorn host race at the two southern sites, potentially accounting for their earlier eclosion phenotype. Thus, although extensive clinal genetic variation in the ancestral hawthorn race exists and contributed to the host shift to apple, further study is needed to resolve details of how this standing variation was selected to generate earlier eclosing apple fly populations in the North

    Risk-reducing hysterectomy and bilateral salpingo-oophorectomy in female heterozygotes of pathogenic mismatch repair variants: a Prospective Lynch Syndrome Database report

    Get PDF
    Purpose To determine impact of risk-reducing hysterectomy and bilateral salpingo-oophorectomy (BSO) on gynecological cancer incidence and death in heterozygotes of pathogenic MMR (path_MMR) variants. Methods The Prospective Lynch Syndrome Database was used to investigate the effects of gynecological risk-reducing surgery (RRS) at different ages. Results Risk-reducing hysterectomy at 25 years of age prevents endometrial cancer before 50 years in 15%, 18%, 13%, and 0% of path_MLH1, path_MSH2, path_MSH6, and path_PMS2 heterozygotes and death in 2%, 2%, 1%, and 0%, respectively. Risk-reducing BSO at 25 years of age prevents ovarian cancer before 50 years in 6%, 11%, 2%, and 0% and death in 1%, 2%, 0%, and 0%, respectively. Risk-reducing hysterectomy at 40 years prevents endometrial cancer by 50 years in 13%, 16%, 11%, and 0% and death in 1%, 2%, 1%, and 0%, respectively. BSO at 40 years prevents ovarian cancer before 50 years in 4%, 8%, 0%, and 0%, and death in 1%, 1%, 0%, and 0%, respectively. Conclusion Little benefit is gained by performing RRS before 40 years of age and premenopausal BSO in path_MSH6 and path_PMS2 heterozygotes has no measurable benefit for mortality. These findings may aid decision making for women with LS who are considering RRS.Hereditary cancer genetic
    corecore