1,148 research outputs found

    Immunity to MHC class I antigen after direct DNA transfer into skeletal muscle.

    Get PDF
    Plasmid cDNA encoding the alpha-chain of either membrane-bound (pcRT.45) or secreted (pcRQ.B3) RT1Aa MHC class I Ag were transferred to Lewis (RT1(1)) rat skeletal muscle by direct injection. Rats were challenged 7 days later with an ACI (RT1a) heterotropic heart transplant, and cardiac allograft survival, RT1Aa-specific antibody levels, and frequency of ACI-specific CTL were monitored. Graft rejection was accelerated by > or = 2 days in an Ag-specific and dose-dependent manner in pcRT.45-injected rats. The pcRQ.B3-injected rats also rejected grafts more rapidly; however, graft rejection was accelerated by only 1 day, and graft infiltrates were less pronounced than in pcRT.45-injected rats. Injection of pcRT.45 resulted in an increase in ACI-specific CTL precursor frequency 3 days post-transplant, whereas there was no significant change in rats pretreated with pcRQ.B3 injection. Compared with rats injected with a control plasmid encoding firefly luciferase, transfer of pcRT.45 resulted in an increase in RT1Aa-specific IgG and IgM antibody 3 days after heart transplantation. Transfer of pcRQ.B3 resulted in a similar mean increase in RT1Aa-specific IgG and IgM antibody after transplantation, but the variability from rat to rat was greater, with some animals exhibiting strong priming, and others showing little or no priming by gene injection. Our results suggest that skeletal muscle can express either membrane-bound or secreted MHC class I Ag after gene transfer, but that the membrane-bound form is more immunogenic than the secreted form in the high responder Lewis rat. Direct DNA transfer to skeletal muscle provides a rapid and specific approach to studying immunity to allogeneic MHC Ag

    Use of donor serum to prevent passive transfer of hyperacute rejection

    Get PDF
    Organ transplantation in presensitized recipients continues to be contraindicated for heart and kidney recipients due to the risk of hyperacute rejection, which has no known treatment at this time. We tested whether donor serum, which contains soluble MHC class I antigen, is able to neutralize the effect of anti-donor antibody in the recipient and prevent hyperacute or accelerated rejection. A rat model of passive immunization was used to test the role of anti-donor antibody in hyperacute rejection. Seven of 10 recipients of hyperimmune serum (HyS), derived from Lewis rats (RT1l) following 3 ACI (RT1a) skin grafts, developed hyperacute or accelerated rejection. Intravenous injection of ACI serum prior to the HyS administration prevented hyperacute rejection in all recipients tested. When third-party (Wistar-Furth, RT1u) serum was given to Lewis rats injected with HyS, hyperacute rejection was not abrogated. When examining the mechanism of this effect, a simple antibody blocking phenomenon was found to be unlikely since flow cytometry analysis showed that ACI serum needed to be present at > or = 256-fold excess compared to HyS to block anti-ACI antibody binding to RT1.Aa+cells by 50%. We tested whether the RT1.Aa class I antigen in ACI serum had other biologic properties that resulted in the prolonged graft survival. However, removal of RT1.Aa antigen from ACI serum prior to use in the passive transfer model did not abrogate the graft prolongation observed previously. These data suggest that components of donor serum other than MHC class I antigen may be useful for preventing the antibody-mediated component of hyperacute rejection

    Соціокультурні аспекти розвитку системи дитячо-юнацького туризму (на прикладі Харківської обласної станції юних туристів)

    Get PDF
    Метою статті є аналіз соціокультурних аспектів сучасного розвитку системи дитячо-юнацького туризму, висвітлення досвіду роботи Харківської обласної станції юних туристів в зазначеному напрямку. Аналіз досліджень і публікацій. Дослідженню питань розвитку системи дитячо-юнацького туризм

    Experimental evidence for Wigner's tunneling time

    Full text link
    Tunneling of a particle through a potential barrier remains one of the most remarkable quantum phenomena. Owing to advances in laser technology, electric fields comparable to those electrons experience in atoms are readily generated and open opportunities to dynamically investigate the process of electron tunneling through the potential barrier formed by the superposition of both laser and atomic fields. Attosecond-time and angstrom-space resolution of the strong laser-field technique allow to address fundamental questions related to tunneling, which are still open and debated: Which time is spent under the barrier and what momentum is picked up by the particle in the meantime? In this combined experimental and theoretical study we demonstrate that for strong-field ionization the leading quantum mechanical Wigner treatment for the time resolved description of tunneling is valid. We achieve a high sensitivity on the tunneling barrier and unambiguously isolate its effects by performing a differential study of two systems with almost identical tunneling geometry. Moreover, working with a low frequency laser, we essentially limit the non-adiabaticity of the process as a major source of uncertainty. The agreement between experiment and theory implies two substantial corrections with respect to the widely employed quasiclassical treatment: In addition to a non-vanishing longitudinal momentum along the laser field-direction we provide clear evidence for a non-zero tunneling time delay. This addresses also the fundamental question how the transition occurs from the tunnel barrier to free space classical evolution of the ejected electron.Comment: 31 pages, 15 figures including appendi

    Development of a tritium permeation barrier on F82H-mod. Sheets and on MANET tubes by hot dip aluminising and subsequent heat treatment

    Get PDF
    Entwicklung von Tritiumpermeationshemmenden Schichten auf F82H-mod. Blechen und MANET Rohren nach dem Hot-Dip Aluminierverfahren mit anschließender Wärmebehandlung In der vorliegenden Arbeit werden die Ergebnisse von tauchaluminierten Blechproben aus F82H-mod. und Rohrproben aus MANET diskutiert. Die anschließende Wärmebehandlung an den getauchten Proben (1040°C, 0.5 h / 750°C, 1 h bzw. 1075°C, 0.5 h / 750°C, 2 h) entspricht der Vergütungsvorschrift für F82H-mod. bzw. der für MANET. Das Hot-Dip Aluminierverfahren mit anschließender Wärmebehandlung eignet sich als Beschichtungsmethode sowohl für Blechproben als auch für die Innen- und Außenbeschichtung von Rohren. Die Zusammensetzung und Dicke der hergestellten Schichten ist unabhängig vom eingesetzten Stahl. Des weiteren wird gezeigt, daß die hergestellten Aluminidschichten in Pb-17Li beständig sind, der PRF genügend hoch ist und die einzelnen Prozeßschritte mit der ITM Geometrie und der Fabrikationssequenz vereinbar sind

    Nonlinear electron-phonon coupling in doped manganites

    Full text link
    We employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-metal transition in the doped manganite Pr0.5_{0.5}Ca0.5_{0.5}MnO3_3 after resonant excitation of a high-frequency infrared-active lattice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drive these dynamics, highlighting a new avenue of nonlinear phonon control

    Colorado Native Plant Society Newsletter, Vol. 6 No. 2, April-June 1982

    Get PDF
    https://epublications.regis.edu/aquilegia/1161/thumbnail.jp
    corecore