28 research outputs found

    Deep radio observations of the radio halo of the bullet cluster 1E 0657-55.8

    Get PDF
    We present deep 1.1-3.1 GHz Australia Telescope Compact Array observations of the radio halo of the bullet cluster, 1E 0657-55.8. In comparison to existing images of this radio halo the detection in our images is at higher significance. The radio halo is as extended as the X-ray emission in the direction of cluster merger but is significantly less extended than the X-ray emission in the perpendicular direction. At low significance we detect a faint second peak in the radio halo close to the X-ray centroid of the smaller sub-cluster (the bullet) suggesting that, similarly to the X-ray emission, the radio halo may consist of two components. Finally, we find that the distinctive shape of the western edge of the radio halo traces out the X-ray detected bow shock. The radio halo morphology and the lack of strong point-to-point correlations between radio, X-ray and weak-lensing properties suggests that the radio halo is still being formed. The colocation of the X-ray shock with a distinctive radio brightness edge illustrates that the shock is influencing the structure of the radio halo. These observations support the theory that shocks and turbulence influence the formation and evolution of radio halo synchrotron emission.Comment: 15 pages, 16 figures, 3 tables. Accepted by MNRA

    Star-Formation in the Ultraluminous Infrared Galaxy F00183-7111

    Get PDF
    We report the detection of molecular CO(1-0) gas in F00183-7111, one of the most extreme Ultra-Luminous Infrared Galaxies known, with the Australia Telescope Compact Array. We measure a redshift of 0.3292 for F00183-7111 from the CO(1-0) line and estimate the mass of the molecular gas in 00183 to be 1 ×\times 1010^{10} M⊙_{\odot}. We find that F00183-7111 is predominately powered by the AGN and only ∼\sim14 per cent of the total luminosity is contributed by star-formation (SFR ∼\sim220 M⊙_{\odot} yr−1^{-1}). We also present an optical image of F00183-7111, which shows an extension to the East. We searched for star-formation in this extension using radio continuum observations but do not detect any. This suggests that the star-formation is likely to be predominately nuclear. These observations provide additional support for a model in which the radio emission from ULIRGs is powered by an intense burst of star-formation and by a radio-loud AGN embedded in its nucleus, both triggered by a merger of gas-rich galaxies.Comment: 5 pages, 2 figures, Accepted for publication in MNRAS Letters Accepted 2014 January 19. Received 2013 December 30; in original form 2013 November 2

    A new twist to an old story: HE 0450-2958, and the ULIRG→\to (optically bright QSO) transition hypothesis

    Full text link
    We report on interferometric imaging of the CO J=1--0 and J=3--2 line emission from the controversial QSO/galaxy pair HE 0450--2958. {\it The detected CO J=1--0 line emission is found associated with the disturbed companion galaxy not the luminous QSO,} and implies Mgal(H2)∼(1−2)×1010M⊙\rm M_{gal}(H_2)\sim (1-2)\times 10^{10} M_{\odot}, which is \ga 30% of the dynamical mass in its CO-luminous region. Fueled by this large gas reservoir this galaxy is the site of an intense starburst with SFR∼370M⊙yr−1\rm SFR\sim 370 M_{\odot} yr^{-1}, placing it firmly on the upper gas-rich/star-forming end of Ultra Luminous Infrared Galaxies (ULIRGs, LIR>1012L⊙\rm L_{IR}>10^{12} L_{\odot}). This makes HE 0450--2958 the first case of extreme starburst and powerful QSO activity, intimately linked (triggered by a strong interaction) but not coincident. The lack of CO emission towards the QSO itself renews the controversy regarding its host galaxy by making a gas-rich spiral (the typical host of Narrow Line Seyfert~1 AGNs) less likely. Finally, given that HE 0450--2958 and similar IR-warm QSOs are considered typical ULIRG→\to (optically bright QSO) transition candidates, our results raise the possibility that some may simply be {\it gas-rich/gas-poor (e.g. spiral/elliptical) galaxy interactions} which ``activate'' an optically bright unobscured QSO in the gas-poor galaxy, and a starburst in the gas-rich one. We argue that such interactions may have gone largely unnoticed even in the local Universe because the combination of tools necessary to disentagle the progenitors (high resolution and S/N optical {\it and} CO imaging) became available only recently.Comment: 25 pages, 5 figures, accepted for publication by The Astrophysical Journa

    CO survey of high-z radio galaxies, revisited with ALMA: Jet-cloud Alignments and Synchrotron Brightening by Molecular Gas in the Circumgalactic Environment

    Full text link
    Powerful radio sources associated with super-massive black holes are among the most luminous objects in the Universe, and are frequently recognized both as cosmological probes and active constituents in the evolution of galaxies. We present alignments between radio jets and cold molecular gas in the environment of distant radio galaxies, and show that the brightness of the radio synchrotron source can be enhanced by its interplay with the molecular gas. Our work is based on CO J>1 observations with the Atacama Large Millimeter/submillimeter Array (ALMA) of three radio galaxies with redshifts in the range 1.4 < z < 2.1, namely MRC 0114-211 (z = 1.41), MRC 0156-252 (z = 2.02), and MRC 2048-272 (z = 2.05). These ALMA observations support previous work that found molecular gas out to 50 kpc in the circumgalactic environment, based on a CO(1-0) survey performed with the Australia Telescope Compact Array (ATCA). The CO emission is found along the radio axes but beyond the main radio lobes. When compared to a large sample of high-z radio galaxies from the literature, we find that the presence of this cold molecular medium correlates with an increased flux-density ratio of the main vs. counter lobe. This suggest that the radio lobe brightens when encountering cold molecular gas in the environment. While part of the molecular gas is likely related to the interstellar medium (ISM) from either the host or a companion galaxy, a significant fraction of the molecular gas in these systems shows very low excitation, with r2−1/1−0_{2-1/1-0} and r3−2/1−0_{3-2/1-0} values ≲\lesssim0.2. This could be part of the circumgalactic medium (CGM).Comment: Accepted for publication in ApJ (19 pages, 6 figures

    ALMA Observations of the Physical and Chemical Conditions in Centaurus A

    Get PDF
    Centaurus A, with its gas-rich elliptical host galaxy, NGC 5128, is the nearest radio galaxy at a distance of 3.8 Mpc. Its proximity allows us to study the interaction between an active galactic nucleus, radio jets, and molecular gas in great detail. We present ALMA observations of low J transitions of three CO isotopologues, HCN, HCO+^{+}, HNC, CN, and CCH toward the inner projected 500 pc of NGC 5128. Our observations resolve physical sizes down to 40 pc. By observing multiple chemical probes, we determine the physical and chemical conditions of the nuclear interstellar medium of NGC 5128. This region contains molecular arms associated with the dust lanes and a circumnuclear disk (CND) interior to the molecular arms. The CND is approximately 400 pc by 200 pc and appears to be chemically distinct from the molecular arms. It is dominated by dense gas tracers while the molecular arms are dominated by 12^{12}CO and its rare isotopologues. The CND has a higher temperature, elevated CN/HCN and HCN/HNC intensity ratios, and much weaker 13^{13}CO and C18^{18}O emission than the molecular arms. This suggests an influence from the AGN on the CND molecular gas. There is also absorption against the AGN with a low velocity complex near the systemic velocity and a high velocity complex shifted by about 60 km s−1^{-1}. We find similar chemical properties between the CND in emission and both the low and high velocity absorption complexes implying that both likely originate from the CND. If the HV complex does originate in the CND, then that gas would correspond to gas falling toward the supermassive black hole

    Is the observed high-frequency radio luminosity distribution of QSOs bimodal?

    Full text link
    The distribution of QSO radio luminosities has long been debated in the literature. Some argue that it is a bimodal distribution, implying that there are two separate QSO populations (normally referred to as 'radio-loud' and 'radio-quiet'), while others claim it forms a more continuous distribution characteristic of a single population. We use deep observations at 20 GHz to investigate whether the distribution is bimodal at high radio frequencies. Carrying out this study at high radio frequencies has an advantage over previous studies as the radio emission comes predominantly from the core of the AGN, hence probes the most recent activity. Studies carried out at lower frequencies are dominated by the large scale lobes where the emission is built up over longer timescales (10^7-10^8 yrs), thereby confusing the sample. Our sample comprises 874 X-ray selected QSOs that were observed as part of the 6dF Galaxy Survey. Of these, 40% were detected down to a 3 sigma detection limit of 0.2-0.5 mJy. No evidence of bimodality is seen in either the 20 GHz luminosity distribution or in the distribution of the R_20 parameter: the ratio of the radio to optical luminosities traditionally used to classify objects as being either radio-loud or radio-quiet. Previous results have claimed that at low radio luminosities, star formation processes can dominate the radio emission observed in QSOs. We attempt to investigate these claims by stacking the undetected sources at 20 GHz and discuss the limitations in carrying out this analysis. However, if the radio emission was solely due to star formation processes, we calculate that this corresponds to star formation rates ranging from ~10 solar masses/yr to ~2300 solar masses/yr.Comment: 13 pages, 11 figures. Accepted for publication in Ap
    corecore